RICCI SOLITONS AND RICCI ALMOST SOLITONS ON PARA-KENMOTSU MANIFOLD

Dhriti Sundar Patra

Abstract. The purpose of this article is to study the Ricci solitons and Ricci almost solitons on para-Kenmotsu manifold. First, we prove that if a para-Kenmotsu metric represents a Ricci soliton with the soliton vector field V is contact, then it is Einstein and the soliton is shrinking. Next, we prove that if a η-Einstein para-Kenmotsu metric represents a Ricci soliton, then it is Einstein with constant scalar curvature and the soliton is shrinking. Further, we prove that if a para-Kenmotsu metric represents a gradient Ricci almost soliton, then it is η-Einstein. This result is also hold for Ricci almost soliton if the potential vector field V is pointwise collinear with the Reeb vector field ξ.

1. Introduction

A pseudo-Riemannian metric g, defined on a manifold M^n, is called a Ricci soliton metric, or in short a Ricci soliton if there exist a constant $\lambda \in \mathbb{R}$ and a vector field $V \in \chi(M)$ such that

$$\frac{1}{2} \mathcal{L}_V g + \text{Ric} = \lambda g, \quad (1.1)$$

where \mathcal{L}_V denotes the Lie-derivative in the direction of V and Ric is the Ricci tensor of g. A Ricci soliton is said to be trivial if V is either zero or Killing on M. Ricci soliton is considered as a generalization of Einstein metric and often arises as a fixed point of Hamilton’s Ricci flow. In [19], Pigoli-Rigoli-Rinoldi-Setti generalized the notion of Ricci soliton to Ricci almost soliton by allowing the soliton constant λ to be a smooth function. We denote it by (M^n, g, V, λ). The Ricci almost soliton is said to be shrinking, steady, and expanding accordingly as λ is positive, zero, and negative respectively. Moreover, if the potential vector field V is the gradient of some smooth function u on M^n, i.e., $V = Du$, where D is the gradient operator of g on M^n, then the Ricci soliton is called a gradient Ricci soliton and the soliton Eq. (1.1) becomes

$$\text{Hess } u + \text{Ric} = \lambda g, \quad (1.2)$$

Received December 3, 2018; Revised April 8, 2019; Accepted April 25, 2019.

2010 Mathematics Subject Classification. 53C15, 53C25, 53D10, 53D15.

Key words and phrases. Ricci soliton, Ricci almost soliton, Einstein manifold, paracontact metric manifold, para-Kenmotsu manifold.
where \(\text{Hess} \, u \) denotes the Hessian of \(u \). The function \(u \) is known as the potential function.

As a generalization of Einstein metric, Ricci solitons grow interest on a new class of pseudo-Riemannian geometry called paracontact geometry which is introduced by Kaneyuki and Williams [15]. The importance of paracontact manifolds comes from the theory of para-Kähler manifolds. Since then many authors studied the paracontact geometry (see [1, 3, 5, 6, 9, 15, 16, 18, 25, 26]). Specially, Calvaruso-Perrone [4] explicitly studied the Ricci solitons on almost paracontact metric three-manifolds and describe more examples and Bejancrasmareanu [1] studied Ricci solitons on 3-dimensional normal paracontact manifolds. Further, Blaga [2] studied the \(\eta \)-Ricci soliton on para-Kenmotsu manifolds. On the other hand, studies on Ricci solitons in the frame work of contact geometry are very interesting and therefore many authors have been developed (see [7, 8, 10–14, 17, 20] and references therein). Among these many contexts: on Kenmotsu manifolds [10, 11], on \(K \)-contact and \((\kappa, \mu)\)-contact manifolds [20], on Sasakian manifolds [14], on Kähler manifolds [8] etc. Recently, the present author and Ghosh explicitly studied the Ricci solitons and \(\ast \)-Ricci solitons in the frame-work of Sasakian and \((\kappa, \mu)\)-contact manifolds (see [12, 13]). Further, the study of Ricci solitons on almost Kenmotsu manifolds was started by the Wang and Liu [23] and explicitly studied by Wang (see [21, 22]). Motivated by the above results we study the Ricci solitons and Ricci almost solitons on para-Kenmotsu manifolds.

This paper is organized as follows. In Section 2, the basic information about paracontact metric manifolds and para-Kenmotsu manifolds are given. In Section 3, we consider Ricci solitons on para-Kenmotsu manifold and prove that if a para-Kenmotsu metric \(g \) represents a Ricci soliton where the soliton vector field \(V \) is contact, then it becomes a shrinking soliton which is Einstein. In Section 4, we prove that if a para-Kenmotsu metric \(g \) represents a gradient Ricci almost soliton, then it is \(\eta \)-Einstein. Also we prove this result for Ricci almost soliton with the potential vector field \(V \) is pointwise collinear with the Reeb vector field \(\xi \).

2. Notes on paracontact metric manifolds

In this section, we recall some information about paracontact metric manifolds. We refer to [3, 5, 6, 9, 15, 16, 25, 26] for more details as well as some examples. A \((2n + 1)\)-dimensional smooth manifold \(M^{2n+1} \) has an almost paracontact structure \((\varphi, \xi, \eta)\) if it admits a \((1, 1)\)-tensor field \(\varphi \), a vector field \(\xi \) and a 1-form \(\eta \) satisfying the following conditions:

\[
\varphi^2 = I - \eta \circ \xi, \quad \varphi(\xi) = 0, \quad \eta \circ \varphi = 0, \quad \eta(\xi) = 1,
\]

and there exists a distribution \(\mathcal{D} : p \in M \to \mathcal{D}_p \subset T_pM : \mathcal{D}_p = \text{Ker}(\eta) = \{ x \in T_pM : \eta(x) = 0 \} \), called paracontact distribution generated by \(\eta \). If an
almost paracontact manifold \(M^{2n+1} \) with a structure \((\varphi, \xi, \eta)\) admits a pseudo-Riemannian metric \(g \) such that

\[
g(\varphi X, \varphi Y) = -g(X, Y) + \eta(X)\eta(Y)
\]

for all vector fields \(X, Y \) on \(M \), then we say that \(M \) has an almost paracontact metric structure and \(g \) is called a compatible metric. The fundamental 2-form \(\Phi \) of an almost paracontact metric structure \((\varphi, \xi, \eta, g)\) defined by \(\Phi(X, Y) = g(X, \varphi Y) \) for all vector fields \(X, Y \) on \(M \). If \(\Phi = d\eta \), then the manifold \(M^{2n+1}(\varphi, \xi, \eta, g) \) is called a paracontact metric manifold. In this case, \(\eta \) is a contact form, i.e., \(\eta \wedge (d\eta)^n \neq 0 \), \(\xi \) is its Reeb vector field and \(M \) is a contact manifold (see [6, 16, 18]). An almost paracontact metric manifold is said to be para-Kenmotsu manifold if

\[
(\nabla_X \varphi)Y = \eta(Y)\varphi X + g(X, \varphi Y)\xi
\]

for all vector fields \(X, Y \) on \(M \). On para-Kenmotsu manifold [25]:

\[
\nabla X \xi = -X + \eta(X)\xi,
\]

\[
R(X, Y)\xi = \eta(X)Y - \eta(Y)X,
\]

\[
Q \xi = -2n\xi,
\]

for all vector fields \(X, Y \) on \(M \), where \(\nabla \) is the operator of covariant differentiation of \(g \) and \(Q \) denotes the Ricci operator associated with the Ricci tensor given by \(Rie(X, Y) = g(QX, Y) \) for all vector fields \(X, Y \) on \(M \).

3. Para-Kenmotsu metric as a Ricci soliton

In this section, we study the Ricci Solitons on para-Kenmotsu manifold. First we recall the following.

Lemma 3.1. Let \(M^{2n+1}(\varphi, \xi, \eta, g) \) be a para-Kenmotsu manifold. Then we have

\[
R(X, \xi)Y = g(X, Y)\xi - \eta(Y)X,
\]

\[
(\nabla_X \eta)Y = -g(X, Y) + \eta(X)\eta(Y),
\]

\[
(\ell_\xi g)(Y, Z) = -2\{g(Y, Z) - \eta(Y)\eta(Z)\},
\]

for all vector fields \(Y, Z \) on \(M \).

We can prove Lemma 3.1 by simple routine calculation. Using these results now we prove the following lemma for later use.

Lemma 3.2. Let \(M^{2n+1}(\varphi, \xi, \eta, g) \) be a para-Kenmotsu manifold. Then we have

\[
(\ell_\xi Q)Y = 2QY + 4nY = (\nabla_\xi Q)Y
\]

for all vector fields \(Y \) on \(M \).
Proof. First taking the covariant derivative of (3.3) along an arbitrary vector field X on M and using (3.2) we obtain

$$(3.5) \quad (\nabla_X \xi) g(Y, Z) = -2\{g(X, Y)\eta(Z) + g(X, Z)\eta(Y) - 2\eta(X)\eta(Y)\eta(Z)\}$$

for all vector fields X, Y, Z on M. Now, we recalling the following commutation formula (see Yano [24], p. 23):

$$(3.6) \quad (\mathcal{L}_Y \nabla g - \nabla Z \xi g - \nabla [V, Z] g)(X, Y) = -g((\mathcal{L}_Y \nabla)(Z, X), Y)$$

for all vector fields X, Y, Z on M. By virtue of parallelism of the pseudo-Riemannian metric g, this formula reduces to

$$(3.7) \quad (\mathcal{L}_Y \nabla)(Y, Z) = 2\{\eta(Y)\eta(Z)\xi - g(Y, Z)\xi\}$$

for all vector fields Y, Z on M. Taking covariant differentiation of (3.7) along X and using (2.2), we find

$$(\nabla_X \mathcal{L}_Y)(Y, Z) = -2\{g(X, Y)\eta(Z)\xi + g(X, Z)\eta(Y)\xi + g(Z, X)\eta(Y)\xi - g(Y, Z)\eta(X)\eta(Y)\eta(Z)\xi$$

for all vector fields Y, Z on M. Using this in the following commutation formula (see Yano [24], p. 23)

$$(3.8) \quad (\mathcal{L}_Y R)(X, Y) Z = (\nabla_X \mathcal{L}_Y \nabla)(Y, Z) - (\nabla_Y \mathcal{L}_Y \nabla)(X, Z),$$

we can compute

$$(\mathcal{L}_Y R)(X, Y) Z = -2\{g(X, Z)Y - g(Y, Z)X + \eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y\}$$

for all vector fields X, Y, Z on M. Now, contracting the foregoing Eq. over X, we find

$$(3.9) \quad (\mathcal{L}_Y \text{Ric})(Y, Z) = -4n\{\eta(Y)\eta(Z) - g(Y, Z)\}$$

for all vector fields Y, Z on M. On the other hand, taking Lie derivative of $\text{Ric}(Y, Z) = g(QY, Z)$ with respect to ξ, we get

$$(3.10) \quad (\mathcal{L}_Y \text{Ric})(Y, Z) = (\mathcal{L}_Y g)(QY, Z) + g((\mathcal{L}_Y Q)Y, Z)$$

for all vector fields Y, Z on M. Now, replacing Y by QY in (3.3) and using (2.6), we find

$$(3.11) \quad (\mathcal{L}_Y g)(QY, Z) = -2\{g(QY, Z) + 2n\eta(Y)\eta(Z)\}$$
for all vector fields Y, Z on M. By virtue of (3.11) and (3.10), Eq. (3.9) reduces to $(\mathcal{L}_\xi Q)Y = 2QY + 4nY$ for all vector fields Y on M. Further, it is well known that
\begin{align*}
(\mathcal{L}_\xi Q)Y & = \nabla_\xi QY - \nabla_Q Y \xi - Q(\nabla_\xi Y) + Q\nabla_Y \xi \\
& = (\nabla_\xi Q)Y - \nabla_Q Y \xi + Q\nabla_Y \xi
\end{align*}
for all vector fields Y on M. Thus, by virtue of (2.4) and (2.6) we see that $(\mathcal{L}_\xi Q)Y = (\nabla_\xi Q)Y$ for all vector fields Y on M. This completes the proof. □

Now we consider a para-Kenmotsu metric as a Ricci soliton where the soliton vector field V is contact and proof the following.

Theorem 3.1. Let $M^{2n+1}(\varphi, \xi, \eta, g)$, $n > 1$, be a para-Kenmotsu manifold. If g represents a Ricci soliton, then the soliton is shrinking. Further, if the soliton vector field V is contact, then V is strict and g is Einstein with Einstein constant $-2n$.

Proof. First, from (2.4) we get $R(X, \xi) \xi = -X + \eta(X) \xi$ and the Lie derivative of this along V provides
\begin{equation}
(\mathcal{L}_V R)(X, \xi) \xi + R(X, \mathcal{L}_V \xi) \xi + R(X, \xi) \mathcal{L}_V \xi
\end{equation}
for all vector fields X on M. Now, taking covariant derivative of (1.1) along an arbitrary vector field Z on M and using (3.6) we have
\begin{equation}
g((\mathcal{L}_V \nabla)(Z, X), Y) + g((\mathcal{L}_V \nabla)(Z, Y), X) = -2(\nabla_Z \text{Ric})(X, Y)
\end{equation}
for all vector fields X, Y, Z on M. By a straightforward combinatorial combination of the last equation one can deduce
\begin{equation}
g((\mathcal{L}_V \nabla)(X, Y), Z) = (\nabla_Z \text{Ric})(X, Y) - (\nabla_X \text{Ric})(Y, Z)
\end{equation}
(3.13)
for all vector fields X, Y, Z on M. Next, differentiating (2.6) along an arbitrary vector field X on M and recalling (2.2) we get
\begin{equation}
(\nabla_X Q) \xi = QX + 2nX
\end{equation}
(3.14)
for all vector fields X on M. Taking into account of this, (3.4) and replacing Y by ξ in (3.13) we deduce
\begin{equation}
(\mathcal{L}_V \nabla)(X, \xi) = -2QX - 4nX
\end{equation}
(3.15)
for all vector fields X on M. Taking covariant derivative of (3.15) along Y and using (2.2), (3.15) we obtain
\begin{equation}
(\nabla_Y \mathcal{L}_V \nabla)(X, \xi) - (\mathcal{L}_V \nabla)(X, Y) - 2\eta(Y)(QX + 2nX) = -2(\nabla_Y Q)X
\end{equation}
for all vector fields X on M. Making use of this in (3.8) yields
\begin{equation}
(\mathcal{L}_V R)(X, Y) \xi = 2[\eta(X)QY - \eta(Y)QX + 2n\{\eta(X)Y - \eta(Y)X\}]
\end{equation}
\[(3.16) \quad - \{[\nabla_X Q] Y - (\nabla_Y Q) X]\]

for all vector fields \(X, Y\) on \(M\). Now, replacing \(Y\) by \(\xi\) in (3.16) and using (3.14) and (3.4) we have \((\mathcal{L}_V R)(X, \xi) \xi = 0\). Making use of this along with (2.4), (3.1) in (3.12), one can deduce
\[
(3.17) \quad g(X, \mathcal{L}_V \xi) - 2\eta(\mathcal{L}_V \xi) X = \{(\mathcal{L}_V \eta) X\} \xi
\]
for all vector fields \(X\) on \(M\). Next, taking into account (1.1), (2.6) in the Lie differentiation \(g(\xi, \xi) = 1\) along \(V\) leads to
\[
(3.18) \quad \eta(\mathcal{L}_V \xi) = \lambda - 2n.
\]
Further, by virtue of (2.6), the soliton equation (1.1) reduces to
\[
(3.19) \quad (\mathcal{L}_V \eta) X = g(X, \mathcal{L}_V \xi) - 2(\lambda - 2n) \eta(X)
\]
for all vector fields \(X\) on \(M\). By the help of (3.19) and (3.18), Eq. (3.17) provides \(\lambda = 2n\) and therefore the soliton is shrinking. Further, Eq. (3.18) together with (3.19) yields
\[
(3.20) \quad \mathcal{L}_V \xi = 0 = \mathcal{L}_V \eta.
\]
Also by our assumption, \(V\) is a contact vector field, i.e., \(\mathcal{L}_V \xi = f \xi\). Making use of this in (3.18) gives \(f = \lambda - 2n\) and therefore \(f = 0\). Thus, \(\mathcal{L}_V \xi = 0\), and hence \(V\) is strict. Now, recall the well known formula (see [24, p. 23]):
\[
(3.21) \quad \mathcal{L}_V \nabla_X Y - \nabla_X \mathcal{L}_V Y - \nabla_{[X,Y]} Y = (\mathcal{L}_V \nabla)(X, Y)
\]
for all vector fields \(X, Y, V\) on \(M\). Next, taking \(\xi\) instead of \(Y\) in the preceding equation and using (3.20) we get
\[
(\mathcal{L}_V \nabla)(X, \xi) = \mathcal{L}_V \nabla_X \xi - \mathcal{L}_V X + \eta(\mathcal{L}_V X)
\]
for all vector fields \(X, V\) on \(M\). Taking into account (2.2) and (3.20), the last equation provides \((\mathcal{L}_V \nabla)(X, \xi) = 0\) for all vector fields \(X, V\) on \(M\). By virtue of this, Eq. (3.15) proves that \(g\) is Einstein. This completes the proof. \(\square\)

A pseudo-Riemannian manifold is called \(\eta\)-Einstein, if the Ricci tensor \(\text{Ric}\) is of the form
\[
(3.22) \quad \text{Ric} = a g + b \eta \otimes \eta,
\]
where \(a, b\) are smooth functions on \(M\). For a para-Sasakian manifold of dimension > 3, the functions \(a, b\) are constant (see [25]).

Lemma 3.3. Let \(M^{2n+1}(\varphi, \xi, \eta, g)\) be a para-Kenmotsu manifold. If \(M\) is an \(\eta\)-Einstein manifold, we have
\[
(3.23) \quad \text{Ric}(Y, Z) = (1 + \frac{r}{2n}) g(Y, Z) - \{(2n + 1) + \frac{r}{2n}\} \eta(Y) \eta(Z)
\]
for all vector fields \(Y, Z\) on \(M\).

Proof. Equations (3.22) and (2.6) gives \(r = (2n + 1)a + b\) and \(a + b = -2n\). Thus, we have \(a = 1 + \frac{r}{2n}\) and \(b = -(2n + 1) + \frac{r}{2n}\). Then the Eq. (3.22) can be written as the required form. This completes the proof. \(\square\)
Theorem 3.2. Let $M^{2n+1}(\varphi, \xi, \eta, g)$, $n > 1$, be a η-Einstein para-Kenmotsu manifold. If g represents a Ricci soliton, then the soliton is shrinking and g is Einstein with constant scalar curvature $r = -2n(2n + 1)$.

Proof. By the help of (3.23), the soliton Eq. (1.1) becomes

$$\mathcal{L}_Y g(Y, Z) = \left\{2(\lambda - 1) - \frac{r}{n}\right\} g(Y, Z) + \left\{2(2n + 1) + \frac{r}{n}\right\} \eta(Y) \eta(Z)$$

for all vector fields Y, Z on M. Differentiating this along an arbitrary vector field X on M and using (3.24), (3.26) we have

$$\mathcal{L}_Y \mathcal{L}_Y (Z, X), Y) + g((\mathcal{L}_Y \mathcal{L}_Y)(Z, Y), X)$$

for all vector fields Y, Z on M. By straightforward combinatorial computation of the last equation provides

$$2ng((\mathcal{L}_Y \mathcal{L}_Y)(X, Y), Z) = -\left\{\eta(Y)\eta(Z) - \{2(2n + 1) + \frac{r}{n}\}\right\} g(X, Y)\eta(Z)$$

for all vector fields X, Y, Z on M. Consider a local orthonormal basis $\{e_i : i = 1, 2, \ldots, 2n + 1\}$ of tangent space at each point of M. Next, setting $X = Z = e_i$ in (3.32) and summing over $i : 1 \leq i \leq 2n + 1$, we have $(\mathcal{L}_Y \mathcal{L}_Y)(e_i, e_i) = 0$. Now, putting $X = Y = e_i$ in (3.26) gives

$$(\xi_r)\eta(Z) + (n - 1)(Zr) = 2n\{2n(2n + 1) + r\}\eta(Z)$$

for all vector fields Z on M. Taking $Z = \xi$ in the last equation we get $(\xi_r) = 2\{2n(2n + 1) + r\}$. By virtue of this, Eq. (3.27) yields $Dr = (\xi_r)\xi$. Next, substituting X by ξ in (3.26) we obtain

$$2n(\mathcal{L}_Y \mathcal{L}_Y)(\xi, Y) = -((\xi_r)\{Y - \eta(Y)\})$$

for all vector fields Y on M. Taking covariant derivative of this along X and using (2.6) and (3.15) we get

$$2n(\nabla_X \mathcal{L}_Y \mathcal{L}_Y)(\xi, Y) = 2n(\mathcal{L}_Y \mathcal{L}_Y)(X, Y) - \xi_r\{Y - \eta(Y)\}\xi$$

for all vector fields Y on M. Next, interchanging X, Y in (3.29) and using the well known formula (see [24, p. 23]):

$$(\mathcal{L}_Y R)(X, Y, Z) = (\nabla_X \mathcal{L}_Y \mathcal{L}_Y)(Y, Z) - (\nabla_Y \mathcal{L}_Y \mathcal{L}_Y)(X, Z),$$

it follows that

$$2n(\mathcal{L}_Y R)(X, Y)\xi = Y(\xi_r)\{X - \eta(X)\} - X(\xi_r)\{Y - \eta(Y)\}$$
−2(ξr){η(Y)X − η(X)Y}

for all vector fields X, Y on M. Contracting this over X we have $(£_V \text{Ric})(Y, \xi) = 0$, where we use $Dr = (ξr)ξ$. Further, using (3.23), (3.30) in the Lie derivative of $\text{Ric}(Y, \xi) = −2nη(Y)$ along V yields

\[(1 + \frac{r}{2n})g(Y, £_V \xi) − \{(2n + 1) + \frac{r}{2n}\}η(Y)η(£_V \xi)\]

(3.31)

\[= −4n(λ − 2n)η(Y) − 2ng(Y, £_V \xi)\]

for all vector fields Y on M. Taking $Y = \xi$ in the last equation we get $λ = 2n$ and therefore the soliton is shrinking. Again, setting $Y = Z = \xi$ in (3.24) we obtain $η(£_V \xi) = 0$. Using this in (3.31) yields

\[\{r + 2n(2n + 1)\}£_V \xi = 0.\]

(3.32)

Suppose $r \neq −2n(2n + 1)$ on some open set O of M. Then from (3.32) it follows that $£_V \xi = 0$. Thus, from (2.4) we deduce that $∇_V V = V − η(V)ξ$. Using this, (2.4), (2.5) and (3.28) in the identity (see [24, p. 39]):

\[(£_V ∇)(X, Y) = ∇_X ∇_Y V − ∇_X η(V) − R(V, X)Y,\]

we obtain $ξr = 0$. As $Dr = (ξr)ξ$, so the scalar curvature r is constant. This shows from (3.27) that $r = −2n(2n + 1)$ on O, which is a contradiction on O. Thus, Eq. (3.32) gives $r = −2n(2n + 1)$ and therefore we can conclude from (3.23) that M is Einstein. This completes the proof.

4. Para-Kenmotsu metric as a Ricci almost soliton

In this section, we study the Ricci almost solitons on para-Kenmotsu manifold. First, we consider a para-Kenmotsu metric as a gradient Ricci almost soliton. Thus, the equation (1.1) and (1.2) holds for a smooth function $λ$.

Theorem 4.1. Let $M^{2n+1}(φ, ξ, η, g)$ be a Kenmotsu manifold. If g represents a gradient Ricci almost soliton, then it is $η$-Einstein. Moreover, if the Reeb vector field $ξ$ leaves the scalar curvature r invariant, then g is Einstein with constant scalar curvature $−2n(2n + 1)$.

Proof. Making use of (1.2) in the well known expression of the curvature tensor $R(X, Y) = [∇_X, ∇_Y] − ∇_[X, Y]$, one can obtain

\[R(X, Y)Df = (∇_Y Q)X − (∇_X Q)Y + (Xλ)Y − (Yλ)X\]

(4.1)

for all vector fields X, Y on M. Now, replacing Y by $ξ$ in (4.1) and using (3.4) and (3.14) we deduce

\[R(X, ξ)Df = QX + 2nX + (Xλ)ξ − (ξλ)X\]

for all vector fields X on M. By virtue of (3.1), the preceding equation reduces to

\[g(X, Df − Dλ)ξ = QX + 2nX + {[(ξf) − (ξλ)]}X\]

(4.2)
for all vector fields X on M. Taking scalar product of (4.2) with ξ and using (2.6) yields

\[(4.3) \quad Df - D\lambda = \{(\xi f) - (\xi \lambda)\}\xi.\]

Using this in (4.2) we have

\[(4.4) \quad \text{Ric}(X,Y) = -(2n + (\xi f) - (\xi \lambda))g(X,Y) + \{(\xi f) - (\xi \lambda)\}\eta(X)\eta(Y)\]

for all vector fields X, Y on M. Consider a local orthonormal basis $\{e_i : i = 1, 2, \ldots, 2n + 1\}$ of tangent space at each point of M. Next, taking the inner product of (4.1) with Z and then setting $X = Z = e_i$ and summing over $i : 1 \leq i \leq 2n + 1$, we have

\[(4.5) \quad \text{Ric}(Y, D\lambda) = \{\sum_{i=1}^{2n+1} g((\nabla_{\nabla Y}e_i, e_i) - (\nabla_{e_i} Y)e_i)\} - 2n(Y\lambda)\]

for all vector fields Y on M. Contraction of Bianchi’s second identity gives $\text{div} Q = \frac{1}{2} D\lambda$ and therefore Eq. (4.5) yields

\[(4.6) \quad \text{Ric}(Y, D\lambda) = \frac{1}{2} Yr - 2nY\lambda\]

for all vector fields Y on M. Thus, M is η-Einstein. Moreover, if ξ leaves the scalar curvature r invariant, i.e., $\xi r = 0$ and therefore, $r = -2n(2n + 1)$. This transform the Eq. (4.7) into $\text{Ric} = -2ng$, i.e., g is Einstein. This complete the proof. \square

Next, we extend the above Theorem from gradient Ricci almost soliton to Ricci almost soliton and consider para-Kenmotsu metric as a Ricci almost soliton and the potential vector field V is pointwise collinear with the Reeb vector field ξ and prove:

Theorem 4.2. Let $M^{2n+1}(\phi, \xi, \eta, g)$ be a para-Kenmotsu manifold. If g represents a non-trivial Ricci almost soliton such that the potential vector field V is pointwise collinear with the Reeb vector field ξ, then it is η-Einstein.

Proof. By hypothesis: $V = \rho \xi$ for some smooth function ρ on M. Taking covariant derivative of this along an arbitrary vector field X on M and using (2.2) provides

\[(4.8) \quad \nabla_X V = (X\rho)\xi - \rho(X + \eta(X))\xi.\]

Then the soliton equation (2.1) reduces to

\[(4.9) \quad 2\text{Ric}(X,Y) = 2(\rho - \lambda)g(X,Y) - (X\rho)\eta(Y) - (Y\rho)\eta(X) - 2\rho\eta(X)\eta(Y)\]
for all vector fields X, Y on M. Now, replacing $X = Y = \xi$ in the foregoing equation and using (2.6), we have $\xi \rho = 2n - \lambda$. Taking into account of this, (2.6) and putting $Y = \xi$ in (4.9) gives $X \rho = (2n - \lambda) \eta(X)$. using this in (4.9), we have

\begin{equation}
Ric(X, Y) = (\rho - \lambda) g(X, Y) - (2n + \rho - \lambda) \eta(X) \eta(Y)
\end{equation}

for all vector fields X, Y on M. Tracing the preceding equation gives

\begin{equation}
\rho - \lambda = \frac{r}{2n} + 1.
\end{equation}

This transform the Eq. (4.10) into

\begin{equation}
Ric(X, Y) = \left(\frac{r}{2n} + 1\right) g(X, Y) - \left(\frac{r}{2n} + 2n + 1\right) \eta(X) \eta(Y)
\end{equation}

for all vector fields X, Y on M. This implies that M is η-Einstein. This complete the proof. \hfill \Box

Next, if we take ρ a constant instead of a function, then from $X \rho = (2n - \lambda) \eta(X)$, we have $\lambda = 2n$, which is constant. Thus from (4.11) follows that $\xi r = 0$. Again, tracing (3.4) gives $(\xi r) = 2(r + 2n(2n + 1))$. Hence $r = -2n(2n + 1)$. Making use of this in (4.11) we see that $\rho = 0$, and therefore from the soliton Eq. we conclude that g is Einstein. Thus, we have the following.

Corollary 4.1. If a para-Kenmotsu metric g represents a non-trivial Ricci almost soliton with $V = \rho \xi$ for some constant ρ, then it is Einstein with constant scalar curvature $r = -2n(2n + 1)$.

In particular, we can also say that if a para-Kennmotsu metric g represents a non-trivial Ricci almost soliton where the potential vector field V is ξ, then it is Einstein with constant scalar curvature $r = -2n(2n + 1)$.

References

DHRITI SUNDAR PATRA
DEPARTMENT OF MATHEMATICS
BIRLA INSTITUTE OF TECHNOLOGY MESRA
RANCHI: 835 215, INDIA
Email address: dhritimath@gmail.com