Electronic transport properties of linear carbon chains encapsulated inside single-walled carbon nanotubes

Tomohiro Tojo\(^1\), Cheon Soo Kang\(^2\), Takuya Hayashi\(^2\), and Yoong Ahm Kim\(^3,4\)

\(^1\)Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
\(^2\)Faculty of Engineering, Shinshu University, Nagano 380-0928, Japan
\(^3\)Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea
\(^4\)Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan

Abstract

Linear carbon chains (LCCs) encapsulated inside the hollow cores of carbon nanotubes (CNTs) have been experimentally synthesized and structurally characterized by Raman spectroscopy and transmission electron microscopy. However, in terms of electronic conductivity, their transportation mechanism has not been investigated theoretically or experimentally. In this study, the density of states and quantum conductance spectra were simulated through density functional theory combined with the non-equilibrium Green function method. The encapsulated LCCs inside (5,5), (6,4), and (9,0) single-walled carbon nanotubes (SWCNTs) exhibited a drastic change from metallic to semiconducting or from semiconducting to metallic due to the strong charge transfer between them. On the other hand, the electronic change in the conductance value of LCCs encapsulated inside the (7,4) SWCNT were in good agreement with the superposition of the individual SWCNTs and the isolated LCCs owing to the weak charge transfer.

Keywords: linear carbon chains, single-walled carbon nanotubes, quantum conductance, non-equilibrium Green function method

1. Introduction

One-dimensional linear carbon chains (LCCs) have been anticipated to exhibit high tensile stiffness \([1,2]\), controllable electronic band gaps \([3,4]\), and high electron transport properties \([1,5]\) when compared to any other known materials, thereby making them promising as next-generation electronic and optical devices \([1-5]\). LCCs consisting of \(sp\)-hybridized carbon atoms (known as carbynes) have two different configurations: (1) polyynes with alternating triple and single bonds and (2) cumulenes with consecutive double bonds \([6]\). Experimentally, such carbon chains have been synthesized using a variety of methods, such as carbon cluster beam deposition \([7]\), laser ablation in an organic solution \([8]\), chemical coupling \([9]\), atomic peeling from graphene/carbon nanotubes (CNTs) \([10,11]\), and encapsulation inside the cavity of single-walled (SW), double-walled (DW), and multi-walled (MW) CNTs \([12-15]\). Among them, the encapsulation method has increasingly been employed to stabilize LCCs inside the innermost confined spaces of their CNTs. Thus, being in such a confined nanosized space may prevent chemicals from interacting with LCCs because isolated LCCs have high reactivity of unsaturated \(sp\) hybridization orbitals against moisture or oxygen \([16-18]\). A detailed study of the electrical conductivity and reactivity of isolated LCCs using transmission electron microscopy (TEM) revealed the resistance change of the LCCs and their transformation from \(sp\) hybridization to other bonding forms due to joule heating and electron beam irradiation \([19]\). Therefore, CNTs are especially useful to stabilize the linear...
Electronic transport properties of linear carbon chains

... and the Landauer formula [26] for electro-transportation of LCC-encapsulated SWCNTs under a periodic boundary condition in all directions (i.e., the x, y, z axes). As shown in Fig. 1, the simulation models consisted of three regions, that is, a central scattering region and two semi-infinite left/right electrodes represented by a supercell with repeated unit cells. The C-C bond distances for the isolated polyyne were set alternately at $d_{\text{poly-single}} = 1.51\,\text{Å}$ and $d_{\text{poly-triple}} = 1.22\,\text{Å}$, while that for the cumulene was consecutively $d_{\text{cumul-double}} = 1.37\,\text{Å}$ [27]. Using a bond distance of 1.421Å in graphite [28], the SWCNTs were modeled with (5,5), (6,4), (9,0), and (7,4) chirality, with estimated diameters of 6.785, 6.830, 7.051, and 7.555 Å, respectively. After electronic calculations of the LCC-encapsulated SWCNTs, the unit cells were chosen such that good agreement within 0.5% tolerance in length was ensured between the encapsulated LCCs and SWCNTs. A rectangular supercell of $a\times 25\times 25\,\text{Å}$ (where a is the lengthwise axis of the unit cell) was used. All calculations for quantum conductance on the models were carried out using the Open source package for Material eXplorer (OpenMX, ver. 3.6 code [29]) within the local density approximation (LDA) [30] for the exchange-correlation functionals and norm-conserving pseudopotentials [31]. In this study, we chose the LDA because it provides a bound state of carbon-based materials with a lattice parameter of 2.46 Å in graphite [32]. A cut-off energy of 200 Ry was chosen with the energy convergence criterion of 10^{-6} Hartree, and the vacuum layers were set to ~20 Å in the periodic directions (with the exception of the a axis to prevent electronic interactions between adjacent cells). In addition, $200\times 1\times 1\,k$-point grids were used for all models. The electronic temperature was set to 27˚C for the counting of the electron number.

2. Computational Details

In this work, we utilized density functional theory [22,23] combined with the non-equilibrium Green function method [24,25] and the Landauer formula [26] for electro-transportation of LCC-encapsulated SWCNTs under a periodic boundary condition in all directions (i.e., the x, y, z axes). As shown in Fig. 1, the simulation models consisted of three regions, that is, a central scattering region and two semi-infinite left/right electrodes represented by a supercell with repeated unit cells. The C-C bond distances for the isolated polyyne were set alternately at $d_{\text{poly-single}} = 1.51\,\text{Å}$ and $d_{\text{poly-triple}} = 1.22\,\text{Å}$, while that for the cumulene was consecutively $d_{\text{cumul-double}} = 1.37\,\text{Å}$ [27]. Using a bond distance of 1.421Å in graphite [28], the SWCNTs were modeled with (5,5), (6,4), (9,0), and (7,4) chirality, with estimated diameters of 6.785, 6.830, 7.051, and 7.555 Å, respectively. After electronic calculations of the LCC-encapsulated SWCNTs, the unit cells were chosen such that good agreement within 0.5% tolerance in length was ensured between the encapsulated LCCs and SWCNTs. A rectangular supercell of $a\times 25\times 25\,\text{Å}$ (where a is the lengthwise axis of the unit cell) was used. All calculations for quantum conductance on the models were carried out using the Open source package for Material eXplorer (OpenMX, ver. 3.6 code [29]) within the local density approximation (LDA) [30] for the exchange-correlation functionals and norm-conserving pseudopotentials [31]. In this study, we chose the LDA because it provides a bound state of carbon-based materials with a lattice parameter of 2.46 Å in graphite [32]. A cut-off energy of 200 Ry was chosen with the energy convergence criterion of 10^{-6} Hartree, and the vacuum layers were set to ~20 Å in the periodic directions (with the exception of the a axis to prevent electronic interactions between adjacent cells). In addition, $200\times 1\times 1\,k$-point grids were used for all models. The electronic temperature was set to 27˚C for the counting of the electron number.
3. Results and Discussion

Fig. 2 shows the density of states (DOS) and quantum conductance values represented by \(G_0 = 2e^2/h = 1/12.9 \text{ mS} \) [33] for an isolated polyyne and cumulene. As clearly indicated in Fig. 2a, the isolated polyyne has a wide band gap of \(E_g = 2.51 \text{ eV} \), indicating a semiconducting property corresponding to the conductance of \(0G_0 \) at the Fermi level \((E_F) \) in Fig. 2b. On the other hand, the Fermi level for the cumulene was located in the conduction band (Fig. 2c), indicating a metallic property corresponding to the conductance of \(2G_0 \) in Fig. 2d. These features of both the polyyne and cumulene are in good agreement with other theoretical calculations [27].

The DOS for an individual (5,5) SWCNT showed the metallic property with van Hove singularities at the higher sub-bands (Fig. 3a), thereby displaying high conductance of \(2G_0 \) (Fig. 3b) as two sub-bands cross the Fermi level [34]. Conversely, Fig. 3c shows that the DOS for an individual (6,4) SWCNT was a semiconductor with a band gap of \(E_g = 1.06 \text{ eV} \), which is consistent with earlier experimental and theoretical studies [35]. Therefore, its semiconducting property led to low conductance of \(0G_0 \) (Fig. 3d). While it is known that zigzag (9,0) and (7,4) SWCNTs with a narrow diameter are small-gap semiconductors [36], they are generally expected to have metallic properties corresponding to armchair \((n,n)\) SWCNTs due to a curvature effect [36]; the corresponding DOS spectra in the inset images of Fig. 3e and g show a small gap near the Fermi level. On the other hand, these quantum conductance values in Fig. 3f and h present metallic values of approximately \(2G_0 \) at the Fermi level. When focusing on these conductances around the Fermi level, a sharp peak was observed in each of the (9,0) and (7,4) SWCNTs, suggesting strong hybridization of \(sp \) orbitals in nanotubes with narrow diameters [36,37].

The DOS and conductance spectra for the LCCs inside the SWCNTs are depicted in Figs. 4 and 5. Interestingly, two new peaks appeared near the Fermi level in the DOS spectra for the polyyne-encapsulated (5,5) SWCNT (Fig. 4a), leading to an increment in the conductance from \(2G_0 \) for an individual (5,5) SWCNT to \(3G_0 \) (Fig. 4b), despite the fact that an isolated polyyne is a semiconducting property. Comparing the DOS spectra for cumulene-encapsulated (5,5) SWCNT (Fig. 5a) with that of the individual (5,5) SWCNT, there was no dramatic change in the shape of the DOS spectra even considering that the conductance was \(0G_0 \) in Fig. 5b, corresponding to a semiconducting property. Therefore, electronic changes in conductances are thought to be due to charge transfer and hybridization effects between SWCNTs and LCCs [38]. In fact, the charge transfer values were calculated to be \(0.05 \) and \(>0.05 \) electrons per atom on polyyne and cumulene inside the (5,5) SWCNT, respectively. This suggests strong interactions of LCCs inside SWCNTs with an interactive narrow space. The enhancement and reduction caused by the charge transfer could be seen in the DOS and conductance spectra for the polyyne-cumulene-encapsulated (6,4) SWCNT and the (9,0) SWCNT (Figs. 4 and 5c-f). At the same time, the conductance values for the
Electronic transport properties of linear carbon chains

Inside SWCNTs in order to determine the encapsulation effect on the electronic behaviors. The quantum conductance values varied from metallic to semiconducting or from semiconducting to metallic with differences in the diameters of the (5,5), (6,4), and (9,0) SWCNTs owing to the strong interaction (i.e., charge transfer and hybridization effects). For the (7,4) SWCNT with the larger diameter, the conductance values varied with the superposition of that of the individual tube and an isolated LCC. Therefore, LCCs encapsulation into smaller tubes would have a stronger influence on the electronic behaviors than those encapsulated into larger tubes.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.

4. Conclusions

In this study, we performed first-principles simulations of the DOS and quantum conductance on LCCs encapsulated inside SWCNTs in order to determine the encapsulation effect on the electronic behaviors. The quantum conductance values varied from metallic to semiconducting or from semiconducting to metallic with differences in the diameters of the (5,5), (6,4), and (9,0) SWCNTs owing to the strong interaction (i.e., charge transfer and hybridization effects). For the (7,4) SWCNT with the larger diameter, the conductance values varied with the superposition of that of the individual tube and an isolated LCC. Therefore, LCCs encapsulation into smaller tubes would have a stronger influence on the electronic behaviors than those encapsulated into larger tubes.

Conflict of Interest

No potential conflict of interest relevant to this article was reported.
Acknowledgements

T.T. acknowledges the support from the Grant-in-Aid for Toyota Physical and Chemical Research Institute Scholar Project and from the Naito Science & Engineering Foundation. Y.A.K. acknowledges the financial support in the form of a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIP) (No. NRF-2017R1A2A1A17069771) and from the Nano Material Technology Development Program through the NRF funded by the Ministry of Science, ICT and Future Planning (2016M3A7B4021149).

References

Electronic transport properties of linear carbon chains

