COMPACT INTERPOLATION ON $AX = Y$ IN $\text{Alg} \mathcal{L}$

JOO HO KANG

ABSTRACT. In this paper the following is proved: Let \mathcal{L} be a subspace lattice on a Hilbert space \mathcal{H} and X and Y be operators acting on \mathcal{H}. Then there exists a compact operator A in $\text{Alg} \mathcal{L}$ such that $AX = Y$ if and only if $\sup \left\{ \frac{\|E^* Y f\|}{\|E X f\|} : f \in \mathcal{H}, \ E \in \mathcal{L} \right\} = K < \infty$ and Y is compact. Moreover, if the necessary condition holds, then we may choose an operator A such that $AX = Y$ and $\|A\| = K$.

AMS Mathematics Subject Classification : 47L35.
Key words and phrases : Compact operator, Compact Interpolation Problem, Subspace Lattice.

1. Introduction

Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H}. An interpolation question for \mathcal{C} asks for which operators X and Y on \mathcal{H} when is there a bounded linear operator A (usually satisfying some other conditions) such that $AX = Y$? The "other conditions" that have been of interest to us involve restricting A to lie in the algebra associated with a subspace lattice. The simplest case of the operator interpolation problem relaxes all restrictions on A, requiring it simply to be a bounded operator. In this case, the existence of A is nicely characterized by Douglas [2]. Another interpolation question for a given subalgebra \mathcal{N} of $B(\mathcal{H})$ asks for which vectors x and y in \mathcal{H} is there a bounded operator $A \in \mathcal{C}$ that maps x to y. Lance [6] initiated the discussion by considering a nest \mathcal{N} and asking what conditions on x and y will guarantee the existence of an operator A in $\text{Alg} \mathcal{N}$ such that $Ax = y$. Hopenwasser [3] extended Lance’s result to the case where the nest \mathcal{N} is replaced by an arbitrary commutative subspace lattice \mathcal{L}. Munch [7] considered the problem of finding a Hilbert-Schmidt operator A in $\text{Alg} \mathcal{N}$ that maps x to y, whereupon Hopenwasser [4] again extended

Received November 7, 2013. Revised December 9, 2013. Accepted December 24, 2013.

This work was supported by Daegu University Grant(2012).

© 2014 Korean SIGCAM and KSCAM.
to \(\text{Alg} L\). In [1], authors studied the problem of finding \(A\) so that \(Ax = y\) and \(A\) is required to lie in certain ideals contained in \(\text{Alg} L\) (for a nest \(L\)).

Roughly speaking, when an operator maps one thing to another, we think of the operator as the interpolating operator and the equation representing the mapping as the interpolation equation. The equations \(Ax = y\) and \(AX = Y\) are indistinguishable if spoken aloud, but we mean the change to capital letters to indicate that we intend to look at fixed operators \(X\) and \(Y\), and ask under what conditions there will exist an operator \(A\) satisfying the equation \(AX = Y\).

Let \(x\) and \(y\) be vectors in a Hilbert space. Then \(\langle x; y \rangle\) means the inner product of vectors \(x\) and \(y\). Note that the “vector interpolation” problem is a special case of the “operator interpolation” problem. Indeed, if we denote by \(x \otimes u\) the rank-one operator defined by the equation \(x \otimes u(w) = \langle w, u \rangle x\), and if we set \(X = x \otimes u\), and \(Y = y \otimes u\), then the equations \(AX = Y\) and \(Ax = y\) represent the same restriction on \(A\).

Let \(H\) be a Hilbert space and \(\mathbb{N} = \{1, 2, \ldots\}\). A bounded operator \(A\) on \(H\) has finite-rank if \(\text{range} A\) is finite dimensional. A bounded operator \(A\) on \(H\) is called compact if \(A(\text{ball} H)\) has compact closure in \(H\), where \(\text{ball} H = \{h \in H : \|h\| \leq 1\}\). We denote \(B_0(H)\) the set of all compact operators on \(H\).

We will study finite-rank operator interpolation problems on \(\mathcal{L}\) and find a compact operator \(A\) in \(\text{Alg} L\) such that \(AX = Y\) for given \(X\) and \(Y\) in \(B(H)\) as convergence of finite-rank operators. Also, we will study this problem for given countable operators \(X_1, X_2, \ldots\) and \(Y_1, Y_2, \ldots\).

Theorem 1.1 ([2]). Let \(X\) and \(Y\) be bounded operators acting on a Hilbert space \(H\). Then the following statements are equivalent:

1. \(\text{range} X^* \subseteq \text{range} Y^*\)
2. \(Y^* Y \leq \lambda^2 X^* X\) for some \(\lambda \geq 0\)
3. there exists a bounded operator \(A\) on \(H\) so that \(AX = Y\).

Moreover, if (1), (2), and (3) are valid, then there exists a unique operator \(A\) so that

- (a) \(\|A\|^2 = \inf \{\mu : Y^* Y \leq \mu X^* X\}\)
- (b) \(\text{ker} Y^* = \text{ker} A^*\)
- (c) \(\text{range} A^* \subseteq \text{range} X\).

Lemma 1.2. Let \(A\) and \(X\) be bounded operators acting on a Hilbert space \(H\).

1. If \(X = y \otimes x\) is a rank-one operator and \(Ay \neq 0\), then \(AX\) is a rank-one operator.
2. If \(X = (y_1 \otimes x_1) + (y_2 \otimes x_2)\) is a rank-two operator and \(Ay_1\) and \(Ay_2\) are linearly independent, then \(AX\) is a rank-two operator.
3. If \(X = \sum_{i=1}^{n} y_i \otimes x_i\) is a rank-\(n\) operator and \(Ay_1, \ldots, Ay_n\) are linearly independent, then \(AX\) is a rank-\(n\) operator.
4. If \(X\) is a rank-\(n\) operator, then \(AX\) is a rank-\(m\) operator for \(m \leq n\).
Let rangeA and rangeX are linearly independent. Since

\[\langle x_1, ... \rangle = 0. \]

Conversely, suppose rangeY* ⊆ rangeX* and Y = y ⊗ x. Then there exists an operator B in B(H) such that BX = Y. Then for each \(h \in H \),

\[(y_1 \otimes x_1)h = \langle h, x_1 \rangle y_1 = BXh. \]

So B(rangeX) = rangeY = sp\{y_1\}. Define A : rangeX → H by Ah = Bh if \(h \in rangeX \) and Ah = 0 if \(h \in B(H) \). Since rangeA = B(rangeX) ⊆ \(\overline{B(rangeX)} = sp\{y_1\} \), rangeA ⊆ sp\{y_1\}. Since rangeA is a linear subspace containing y_1, sp\{y_1\} ⊆ rangeA. Hence A is a rank-one operator and AX = Y.

Theorem 1.4. Let X and Y be bounded operators acting on a Hilbert space H. If rangeY* ⊆ rangeX* and Y is a finite-rank operator, then there exists a finite-rank operator A such that AX = Y.

Proof. If Y is a finite-rank operator, then Y = \(\sum_{i=1}^{n} y_i \otimes x_i \), where \(y_1, \ldots, y_n \) are linearly independent. Since rangeY* ⊆ rangeX*, there exists an operator B in B(H) such that BX = Y. For each \(h \in H \),

\[BXh = Yh = \sum_{i=1}^{n} (y_i \otimes x_i)h = \sum_{i=1}^{n} \langle h, x_i \rangle y_i. \]

So B(rangeX) = sp\{y_1, \ldots, y_n\}. Define A : rangeX → H by Ah = Bh if \(h \in rangeX \) and Ah = 0 if \(h \in rangeX^* \). Then A ∈ B(H). And rangeA = B(rangeX) ⊆ \(\overline{B(rangeX)} = sp\{y_1, \ldots, y_n\} \). Therefore \(\dim(rangeA) = n \) and AX = Y.
2. Results

Theorem 2.1. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let X and Y be operators in $B(\mathcal{H})$. Assume that the range of X is dense in \mathcal{H}. Then the following are equivalent:

1. There exists a compact operator A in Alg\mathcal{L} such that $AX = Y$.
2. $\sup \left\{ \frac{\|E^+Yf\|}{\|E^-f\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} = K < \infty$ and Y is compact.

Moreover, if condition (2) holds, we may choose an operator A such that $\|A\| = K$.

Proof. Assume that $\sup \left\{ \frac{\|E^+Yf\|}{\|E^-f\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} = K < \infty$. Then there exists an operator A in Alg\mathcal{L} such that $AX = Y$ by Theorem 3.1 [5]. Since Y is compact, there is a sequence $\{Y_n\}$ of finite-rank operators that converges to Y in the norm topology on $B(\mathcal{H})$. From the construction of Y_n, since range$Y_n^* \subseteq$ rangeY^* for each $n \in \mathbb{N}$, range$Y_n^* \subseteq$ rangeX^* for each $n \in \mathbb{N}$. By Theorems 1.4, there is a finite-rank operator A_n such that $A_nX = Y_n$ for each $n \in \mathbb{N}$. Since $Y_n \to Y$ in the norm topology on $B(\mathcal{H})$, $\|A_n - A\| \to 0$. Hence A is compact. The proof of the converse is obvious.

Theorem 2.2. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let X_1, \ldots, X_n and Y_1, \ldots, Y_n be bounded operators acting on \mathcal{H}. Let k be a fixed natural number in $\{1, 2, \ldots, n\}$ and assume that X_k has dense range. Then the following are equivalent:

1. There exists a compact operator A in Alg\mathcal{L} such that $AX_i = Y_i$ for each $i = 1, 2, \ldots, n$.
2. $\sup \left\{ \frac{\|E^+Yf\|}{\|E^-f\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} = K < \infty$ and Y_k is compact.

Moreover, if condition (2) holds, we may choose an operator A such that $\|A\| = K$.

Proof. If $\sup \left\{ \frac{\|E^+Yf\|}{\|E^-f\|} : f \in \mathcal{H}, E \in \mathcal{L} \right\} = K < \infty$, and for given k in $\{1, 2, \ldots, n\}$, Y_k is compact, then by Theorem 3.2 [5], there exists an operator A in Alg\mathcal{L} such that $AX_i = Y_i$ for $i = 1, 2, \ldots, n$. Since Y_k is compact, there is a sequence $\{Y_m\}$ of finite-rank operators that converges to Y_k in the norm topology on $B(\mathcal{H})$. From the construction of Y_m, we know that range$Y_m^* \subseteq$ rangeY_k^* for each $m \in \mathbb{N}$. Therefore range$Y_m^* \subseteq$ rangeX_k^* for each $m \in \mathbb{N}$. By Theorem 2.1, for each $m \in \mathbb{N}$, there is a finite-rank operator A_m such that $A_mX_k = Y_m$. Since $Y_m \to Y_k$ in the norm topology on $B(\mathcal{H})$, $\|A_m - A\| \to 0$. Hence A is compact. We omit the proof of the converse since it can be proved easily.

Theorem 2.3 ([5]). Let \mathcal{L} be a subspace lattice on \mathcal{H} and let X_1, \ldots, X_n and Y_1, \ldots, Y_n be bounded operators acting on \mathcal{H}. Let k be a fixed natural number in $\{1, 2, \ldots, n\}$ and assume that X_k has dense range and $\text{Re}(E^+X_if; E^+X_jg) \geq 0$ for each E in \mathcal{L}, $i < j$ and all f, g in \mathcal{H}. Then the following are equivalent:

1. range$E^+Y_k^* \subseteq$ range$E^+X_i^*$ for each E in \mathcal{L} and $i = 1, 2, \ldots, n$.
2. There exists an operator A in Alg\mathcal{L} such that $AX_i = Y_i$ for $i = 1, 2, \ldots, n$.

Compact interpolation on $AX = Y$ in $\text{Alg} \mathcal{L}$

(3) sup $\left\{ \frac{\|E^i (\sum_{j=1}^m Y_j f_j)\|}{\|E^i (\sum_{j=1}^m X_j f_j)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L} \right\} < \infty$.

By the Theorem 2.3, we can get the following Theorem.

Theorem 2.4. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let X_1, \ldots, X_n and Y_1, \ldots, Y_n be bounded operators acting on \mathcal{H}. Let k be a fixed natural number in $\{1, 2, \ldots, n\}$ and assume that X_k has dense range. If for $i < j$ in $\{1, 2, \ldots, n\}$ and all f, g in \mathcal{H}, $\text{Re}(E^i X_i f, E^i X_j g) \geq 0$, then the following are equivalent:

1. range $E^i Y_i^* \subseteq$ range $E^i X_i^*$ for each E in \mathcal{L} and $i = 1, 2, \ldots, n$, and Y_k is compact.

2. There exists a compact operator A in $\text{Alg} \mathcal{L}$ such that $AX_i = Y_i$ for $i = 1, 2, \ldots, n$.

If we observe the proof of the above theorems, we can generalize Theorem 2.2 to the countable case easily.

Theorem 2.5. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let X_i and Y_i be bounded operators acting on \mathcal{H} for all $i = 1, 2, \ldots, n$. Let k be a fixed natural number in $\{1, 2, \ldots, n\}$ and assume that X_k has dense range. Then the following are equivalent:

1. There exists a compact operator A in $\text{Alg} \mathcal{L}$ such that $AX_i = Y_i$ for $i = 1, 2, \ldots, n$.

2. sup $\left\{ \frac{\|E^i (\sum_{j=1}^m Y_j f_j)\|}{\|E^i (\sum_{j=1}^m X_j f_j)\|} : f_i \in \mathcal{H}, \ E \in \mathcal{L}, \ m \in \mathbb{N} \right\} = K < \infty$ and Y_k is compact.

Moreover, if condition (2) holds, we may choose an operator an operator A such that $\|A\| = K$.

Theorem 2.6. Let \mathcal{L} be a subspace lattice on \mathcal{H} and let X_i and Y_i be bounded operators acting on \mathcal{H} for all $i = 1, 2, \ldots, n$. Let k be a fixed natural number in $\{1, 2, \ldots, n\}$ and assume that X_k has dense range and $\text{Re}(E^i Y_i f, E^i Y_j g) \leq \text{Re}(E^i X_i f, E^i X_j g)$ for each E in \mathcal{L}, $i < j$ and all f, g in \mathcal{H}, then the following are equivalent:

1. There exists $M \geq 0$ such that sup $\left\{ \frac{\|E^i Y_i f\|}{\|E^i X_i f\|} : f \in \mathcal{H}, \ E \in \mathcal{L} \right\} < M$ for each $i \in \mathbb{N}$ and Y_k is compact.

2. There is a compact operator A in $\text{Alg} \mathcal{L}$ such that $AX_i = Y_i$ for $i = 1, 2, \ldots, n$.

References

Joo Ho Kang received her Ph.D. at the University of Alabama under the direction of Tavan T. Trent. She has been a professor of Daegu University since 1977. Her research interest is an operator theory.

Department of Mathematics, Daegu University, Kyungpook, Korea.

e-mail: jhkang@daegu.ac.kr