DCT을 사용한 디지털 하프토닝

Digital Halftoning using DCT

Young-Man Kwon, Kyuho Kim, Hyeong-Joon Kwon

Abstract In this paper, we discussed the traditional methods of generating digital halftoning image and DCT transform. Then we propose a new and simple halftoning algorithm that is based on DCT transformation. We do the feasibility test to verify the proposed algorithm. So we assessed several images generated by adjusting weights of DCT coefficients. As a result, we got the better result for weights of the ramp function type than for weights of the step function type through experiment. As a simple application, we can apply our algorithm to the MPEG video for generating the halftoning video.

Key Words : Ordered Dither, Error Diffusion, Digital Halftoning, DCT

I. Introduction

Digital halftoning is a technique to display an image with only black and white colors. We need this kind of technology when a monochrome or color image is printed by a printer with limited number of ink colors. The history of halftoning technology can be dated back to the last century when physical screens and gauzes were used to generate halftone image[1-4]. These techniques have been translated directly to digital halftoning. Ordered dither is the natural digital solution, where it designed a two-dimensional threshold array and the halftoning process is accomplished by a simple pixel-wise comparison of the grayscale image against this array.

In he better result for weights of the ramp function type than for weights of the step function type through the experiment. Also, we think we need further works for adjusting the coefficients of the DCT transformation.
The most popular technology of halftoning algorithms is error diffusion that propagates quantization errors to unprocessed neighboring pixels according to some fixed ratios. The error diffusion preserves the average intensity level between the original input images and the binary output image. Furthermore, the error diffusion produces good half tone image despite relatively low cost. However, since ordered dither and error diffusion algorithm may generate worm artifacts especially in the image areas of flat intensity, various modification are proposed \cite{1-8}. Also there are another research area of halftone in the parallel processing \cite{9-10}.

In this paper, we will propose the new and simple method that use DCT transformation to get halftoning image. Also we do experiment of the feasibility test using DCT transformation for halftoning. As a result, we can conclude we can use the DCT transformation for digital halftoning.

II. Existing methods

This section analyzes two extreme methods of digital halftoning and DCT (Discrete Cosine Transform). Section 2-1 describes ordered method which uses ordered dither array to threshold the value of image. Section 2-2 describes conventional error diffusion which uses a fixed error filter and a quantizer by thresholding. Section 2-3 describes DCT.

2.1 Ordered dither

The OD (Ordered Dither) algorithm generates a binary halftone image by comparing pixels of an original continuous-tone image to the dither array. It is the array of a threshold values which is composed of a deterministic values. The OD algorithm is a point operation, that is, the output depends only on the value of the current pixel and threshold value of OD array \cite{1-4}.

The OD array are "ordered" rather than "random". However, the OD array is not unique. Two classes of OD array are commonly used: dispersed-dot and cluster-dot. In a dispersed-dot OD array, consecutive entries visited are far apart, while in clustered-dot dither, they are adjacent or almost so. Fig. 1 gives four examples of the OD array\cite{5}.

![OD Array Examples](image)

1. Ordered Dither 배열의 예들.

Fig. 1. Examples of ordered dither array. (a) dispersed-dot (2x2), (b) clustered-dot (2x2), (c) dispersed-dot (4x4), (d) clustered-dot (4x4).

Let \((i,j)\) be the normalized grayscale image defined on domain \(D\), where \(D\) has the size of \(I \times J\). A dither array \(D\) is an \(m \times n\) array containing all the integers from 0 to \(mn-1\). Then threshold values of OD array is given by the following equation:

\[
Th(k) = \frac{2k + 1}{2mn}, \quad k = 0, 1, \ldots, mn-1
\]

(1)

and we can get the output image \(b\) of OD halftoning by using the following equation:

\[
b(i,j) = \begin{cases} 1 & \text{if } f(i,j) \geq Th(D(i \mod m, j \mod n)) \\ 0 & \text{otherwise} \end{cases}
\]

Clustered-dot OD method is primarily used for printing devices that have difficulty printing isolated single pixels. Obviously, this congregation of pixels will result in noticeable low-frequency structures in the output image. On the other hand, in Dispersed-dot OD method, halftone dots in a cell are turned on individually without grouping them into clusters. Therefore, sharp edges can be better rendered compared to clustered-dot dither. However, dispersed-dot method is more susceptible to the dot gain problem that is the increase in size of the printed dot relative to its intended size\cite{5}.
2.2 Error diffusion

Floyd and Steinberg diffuse the quantization error over the neighboring continuous-tone pixels. They call this error diffusion (ED). This ED method is not a point process but a neighborhood process because the output is determined by the value of current pixel along with values of pixels surrounding it. The block diagram for grayscale ED method is as the following Fig. 2.

![Block diagram of ED algorithm](image)

2. ED 알고리즘의 블록 다이어그램. Fig. 2. The block diagram of ED algorithm.

In this method, the output pixel value \((i,j)\) of binary image is determined in raster (or serpentine) scan order. The value \(b(i,j)\) is determined simply by thresholding as follows:

\[
b(i,j) = \begin{cases} 1 & \text{if } u(i,j) > 1/2 \\ 0 & \text{if } u(i,j) \leq 1/2 \end{cases}
\]

(2)

Clearly, the quantization error is computed by the following equation:

\[
e(i,j) = u(i,j) - b(i,j)
\]

(3)

Note that the ED algorithm selects the pixel value of the output binary image to minimize the absolute value of error \(|e(i,j)|\). Then it distributes the weighted error to the set of unprocessed pixels.

\[
f(i+k,j+l) = f(i+k,j+l) + w_{k,l} \cdot e(i,j)
\]

(4)

Where \(w_{k,l}\) are coefficients of the error filter. The commonly used coefficients for error filters are those as following Fig. 3.

![Diagram of error filters](image)

그림 3. ED 기법에서 사용되는 일반적인 오차 필터들. Fig. 3. Commonly used error filters for ED methods, (a) Floyd–Steinberg (raster), (b) Floyd–Steinberg (serpentine), (c) Javis (raster), and (d) Stucki (raster).

The success of error diffusion lies in the fact that it is a “good blue-noise generator” as pointed out by Ulichney. In the academic literature, the nature of noise is often described by a color name: i.e., white-noise is so named because of its flat power spectrum. On the other hand, blue-noise has most of its energy located at high spatial frequencies with very little low frequency component. Patterns with blue-noise characteristics generally enjoy the benefits of aperiodically uncorrelated dot patterns without low-frequency graininess.

2.3 Discrete Cosine Transform

The discrete cosine transform (DCT) helps separate the image into parts (or spectral sub-bands) of differing importance (with respect to the image’s visual quality). The DCT is similar to the discrete Fourier transform: it transforms a signal or image from the spatial domain to the frequency domain. You can often reconstruct a sequence very accurately from only a few DCT coefficients, a useful property for applications requiring data reduction. The general equation for a 1D (N data items) DCT is defined by the following equation:

\[
y(k) = \sum_{n=1}^{N} x(n) \cos \left(\frac{\pi (2n-1)(k-1)}{2} \right)
\]

(5)

where
Halftoning using DCT

\[
(k) = \begin{cases}
1 & k = 1 \\
\frac{2}{N} & 2 \leq k \leq N
\end{cases}
\]

The definition of the two-dimensional DCT for an input image \(A \) and output image \(B \) is defined by the following equation:

\[
f_{m,n} = \alpha_{m} \beta_{n} \sum_{m,n=0}^{N-1} A_{m,n} \cos \left(\frac{\pi}{2M} (2m+1)p \right) \cos \left(\frac{\pi}{2N} (2n+1)q \right)
\]

(6)

where

\[
\alpha_{p} = \begin{cases}
1 & p = 0 \\
\frac{1}{\sqrt{2}} & 1 \leq p \leq M - 1
\end{cases}
\]

\[
\beta_{q} = \begin{cases}
1 & q = 0 \\
\frac{1}{\sqrt{2}} & 1 \leq q \leq N - 1
\end{cases}
\]

the definition of the two-dimensional inverse DCT is defined by the following equation:

\[
A_{m,n} = \sum_{p=0}^{M-1} \sum_{q=0}^{N-1} \alpha_{p} \beta_{q} f_{p,q} \cos \left(\frac{\pi}{2M} (2m+1)p \right) \cos \left(\frac{\pi}{2N} (2n+1)q \right)
\]

(7)

III. The proposed algorithm

In this paper, we present the efficient digital halftone algorithm that is based on the DCT. This algorithm achieves digital halftoning by the block processing that is typically 4x4, or 8x8. At first this algorithm decides the block size and then do the block based processing.

For the each block, this algorithm does the DCT transformation at first and then finds the weights for the each coefficients. After finding the weight for the coefficients, this multiply the weights to all the coefficients. After that, this does the IDCT transformation and generate the halftone for the block by thresholding. The overall flow diagram of the proposed algorithm is appeared in the Fig. 4.

IV. Experimental results

We did several experiments to verify the our proposed algorithm. At first, we represented the results of the other algorithm. See the Fig. 5.

![Flow Diagram](image)

Fig. 4. The overall flow diagram for the proposed algorithm.

![Halftoning Images](image)

Fig. 5. The halftoning images of various methods.
1. Fig. 5のPSNRとWSNR.

Table 1. PSNR and WSNR of Fig. 5

<table>
<thead>
<tr>
<th>Methods</th>
<th>PSNR(dB)</th>
<th>WSNR(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered Dither</td>
<td>5.718</td>
<td>0.259</td>
</tr>
<tr>
<td>Error Diffusion (4x4)</td>
<td>6.753</td>
<td>30.110</td>
</tr>
<tr>
<td>Rank Based Order (4x4)</td>
<td>7.167</td>
<td>13.751</td>
</tr>
</tbody>
</table>

In Fig. 5, the (a) is the original Lenna image that is used in our experiment. And the (b) is the result of ordered dither (OD) method and the (c) is the result of error diffusion (ED) method by Floyd-Steinberg. The (d) is the result of Rank-Based Ordered Dither (RBOD) method\(^{[9]}\). We get the assessment as Table 1 for the Fig. 5. In this paper, we use PSNR and WSNR for assessment\(^{[8-10]}\).

At first, we did the experiment to show the effect of weights for the coefficients and got the result as Fig. 6 and Table 2. In the Fig., the (a) is the result of setting the value of DC coefficient to value 0(zero) simply and IDCT transformation and thresholding. In this case it corresponds to the ideal HPF (High Pass Filter) of step function type. The (b) is the result of setting (a) step and multiplying 1/2 to the (1, 2) and (2, 1) coefficient of DCT, and IDCT transformation and thresholding. In this case it corresponds to the ideal HPF of ramp function type. And we used the threshold value as 0(zero) during experiment. We get the assessment as Table 2 for the Fig. 6.

We also did the experiment to show the effect of block size and got the result as Fig. 7 and Table 3. As you can see from the result image and assessment, we got the better result for weights of the ramp function type than for weights of the step function type. But this time, we do not know how much and how we have to multiply the weight to get the result as error diffusion.

![Fig. 6. The halftoning images by using different weights.](image1)

<table>
<thead>
<tr>
<th>Methods (block : 4x4)</th>
<th>PSNR(dB)</th>
<th>WSNR(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step type weight</td>
<td>6.281</td>
<td>9.274</td>
</tr>
<tr>
<td>Ramp type weight</td>
<td>6.289</td>
<td>9.754</td>
</tr>
</tbody>
</table>

![Fig. 7. The halftoning images of various block size.](image2)
3. 그림 7의 PSNR과 WSNR.
Table 3. PSNR and WSNR of Fig. 7

<table>
<thead>
<tr>
<th>Methods</th>
<th>PSNR(dB)</th>
<th>WSNR(dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step type weight (4x4)</td>
<td>6.281</td>
<td>9.274</td>
</tr>
<tr>
<td>Ramp type weight (4x4)</td>
<td>6.239</td>
<td>9.754</td>
</tr>
<tr>
<td>Step type weight (8x8)</td>
<td>6.709</td>
<td>6.191</td>
</tr>
<tr>
<td>Ramp type weight (8x8)</td>
<td>6.672</td>
<td>7.371</td>
</tr>
<tr>
<td>Step type weight (16x16)</td>
<td>7.310</td>
<td>4.667</td>
</tr>
<tr>
<td>Ramp type weight (16x16)</td>
<td>7.190</td>
<td>5.364</td>
</tr>
</tbody>
</table>

V. Conclusion

In this paper, we did the feasibility test of generated halftoning image by using DCT transformation, we can get the better result for weights of the ramp function type than for weights of the step function type through the experiment. As a simple application, we can apply our algorithm to the MPEG video for generating the halftoning video. Also, we think we need further works for adjusting the coefficients of the DCT transformation.

References

소개

영 만(종신학원)

• 1993년 3월 : 올지대학교 의료IT마케팅학과 교수
 <관심분야 : 신호처리, 비전비전, 운영체제, 기계학습>
 <E-mail : ymkwon@eulji.ac.kr>

권 형 준(정회원)

• 2013년 8월 : 성균관대학교 공학박사
• 2013년 11월 : 성균관대학교 상임연구원
 <관심분야 : 데이터 분석/마이닝, 패턴예측/추론, HCI 등>

김 규 호(정회원)

• 1992년 3월 : 올지대학교 의료IT 마케팅학과 교수
 <관심분야 : u-헬스케어시스템, 네트워크 관리 등>
 <E-mail : kkim@eulji.ac.kr>