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Abstract
We introduce the concept of level subgroups of an intuitionistic fuzzy subgroup and study some of it’s properties.
These level subgroups in turn play an important role in the characterization of all intuitionistic fuzzy subgroup of a

prime cyclic group.
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1. Introduction

The notion of fuzzy sets was introduced by Zadeh in
[20]. Since its inception, the theory of fuzzy sets has de-
veloped in many directions and is finding applications in
a wide variety of fields. In particular, several researchers
[3, 7-9, 18, 19] have applied the notion of fuzzy sets to
group theory.

In 1986, Atanassov [1] introduced the concept of in-
tuitionistic fuzzy sets as the generalization of fuzzy sets.
Recently, Coker and his colleagues [5,6,10], Hur and his
colleagues [13], and Lee and his colleague[17] applied the
notion of intuitionistic fuzzy sets to topology. In particu-
lar, Hur and his colleagues [15] applied one to topological
group. In 1989, Biswas [4] introduced the concept of in-
tuitionistic fuzzy subgroups and investigated some of it’s
properties. Moreover, Hur and his colleagues [11,12,14,16]
redefined the concept of intuitionistic fuzzy subgroupoids,
subgroups and rings, and studied some of their properties.
In particular, they gave a characterization of all intuition-
istic fuzzy subgroups of a prime cyclic group in tems of
the complex mapping [11, Proposition 2.14].

In this paper, we obtain a similar characterization of all
intuitionistic fuzzy subgroups of finite cyclic groups. For
this, we study some properties of level subgroupss of an
intuitionistic fuzzy subgroup in the first part of the paper.
These level subgroups in turn play an important role in
the above characterization.

2. Preliminaries

We will list some concepts and results needed in the
later sections.
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Forsets X, Y and Z, f = (f1,f2) : X - Y x Z is
called a complex mappingif f1 : X - Y and fo : X — Z
are mappings.

Throughout this paper, we will denote the unit interval
[0,1] as 1.

Definition 1.1[1,5]. Let X be a nonempty set. A
complex mapping A = (pa,va) : X — I x I is called
an intuitionistic fuzzy set (in short, IFS) on X if
pa(r) +va(z) <1 for each z € X, where the mapping
pa X — I and vqa © X — I denote the degree of
membership (namely pa(z)) and the degree of nonmem-
bership (namely v4(z)) of each & € X, respectively. In
particular, 0. and 1. denote the intuitionistic fuzzy
empty set and the intuitionistic fuzzy whole set in X
defined by 0.(z) = (0,1) and 1.(z) = (1,0) for each
z € X, respectively.

We will denote the set of all IFSs in X as IFS(X).

Definitions 1.2[1]. Let X be a nonempty set and let
A= (pa,va) and B = (up,vp) be IFSs on X. Then

(1) ACBiff uy < pp and vy > vg.

(2) A=Bif AC Band B C A.

(3) AC = (VA7,LLA)‘

(4) ANB= (LLAA/LB,UA \/I/B).

(5) AUB = (pa V pp,va Avp).

Definition 1.3[5]. Let {A;};c; be an arbitrary family of
IFSs in X, where A; = (1a,,va4,) for each i € J. Then
(a) NAi = (A pa,, Vva,)
(b) UAI = (\/ Ba;, /\ VAi)'

Definition 1.4[{14]. Let A be an IFS in a set X
and let A\,p € I with A + ¢ < 1. Then the set
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APRE) = {z e X :pa(z) > X and vu(z) < p} is called a
(A, w)-level subset of A.

Result 1.A[12, Proposition 2.2]. Let A be an IFS in
a set X and let (Aq, 1), (A2, p2) € ImA. If Ay < Ap and
{1 > o, then AQzwz) ¢ AGwm),

Definition 1.5[11]. Let G be a group and let A €
IFS(G). Then A is called an intuitionistic fuzzy subgroup
( in short, IFG) of G if it satisfies the following condi-
tions:

(i) pa(zy) > palz) A paly) and
valzy) < valz) Vwva(y) for each z,y € G.
(i) pa(z™!) > pa(z) and

We will denote the set of all IFGs of G as IFG(G).

Result 1.B[11, Proposition 2.6]. Let A be an
IFG of a group G. Then A(zx7!) = A(z) and
pa(z) < pale),va(z) > wvale) for each z € G,
where e is the identity element of G.

Result 1.C[11, Proposition 2.17 and Proposition
2.18]. Let A be an IFS of a group G. Then A € IFG(G)
if and only if for each (A, ) € I x T with (X, p) < A(e),
e, A< pa(e) and p > va(e), AN is a subgroup of G.

Result 1.D[11, Proposition 2.14]. Let G, be the
cyclic group of prime order p. Then A € IFG(G,) if and
only if A(z) = A(y) < A(e), i.e., palz) = paly) < pale)
and v4(x) = va(y) > va(e) for any z,y € Gy such that
rF#eandy#e.

3. Level subgroups

From Result 1.C, we define the following concept.

Definition 2.1. Let G be a group and let A € IFG(G)
and let (A, p) € T x I with (A, ) < A(e). AMM is called
a (A, p)-level subgroup of A.

Let G be a finite group. Then the number of subgroups
of G is finite. However, the number of level subgroups
of an IFG A appears to be infinite. Indeed, since every
level subgroup is a subgroup of G, not all these level
subgroups are distinct.

Example 2.1 Let G be the Klein four-group:
G = {a, b, a®> = b* = (ab)® = e}.

Then the elements of G are e,a,b and ab. Moreover, it
is clear that the number of subgroups of G is finite. We
define a complex mapping A = (ua,v4) : G — I x I as
follows;

pale) = (Xo, po), pala) = (A1, 1),

pa(d) = (A2, p2) and pa(ab) = (A3, p3),

where (A\j,ps) € T x T (i = 0,1,2 and 3), Ag > Ay,
po < py (1=1,2,3) and A3 > A A A2, p3 < pa Vopa.
Then we can easily see that A € IFG(G). Consider the
family P = {AP#) - (X pu) € T x I with (\, ) < A(e)}.
Then, by Result 1.C, P is a family of level subgroups of
(. Furthermore, P is infinite. But we can see that all
members of P are not distinct.

Proposition 2.2. Let G be a group and let A €
IFG(G). Two level subgroups A1) and A(*2:52) (with
(t1,81) < (to, s2), L.e., t1 <tz and s1 > s3) of A are equal
if and only if there is no z € G such that t; < pa(z) < t2
and s1 > va(x) > sso.

Proof.(=): Suppose A1) = A(t2:52)  Assume that
there exists an z € G such that #; < pa{z) < t2 and
s1 > va(z) > s2. Then « € Alts1) and ¢ ¢ Altz:s2)
Thus, by Result 1.A, Alt252) § Alt:51) - This contradicts
the hypothesis.

(<): Suppose the necessary condition holds. Since
t1 < ty and s; > so, by Result 1.A] Altzisa) o Alts1)
Let ¢ € A®%). Then t; < pa(z) and 51 > va(z).

By the hypothesis, to < pa(z) and so > wva(z).
Thus z € A(252) So Altus) < Altas2) Hence
Alts1) — A(t2,82) ]

Corollary 2.2. Let G be a finite group of order n
and let A € IFG(G). Let ImA = {(t;,s:)) : Alz) =
(t:, s:) for some x € G}. Then {A5:)} is the set of the
only level subgroups of A.

Proof. By Result 1.C, A¢%9) is a subgroup of G. Let
(X, 1) € I x I such that (A, u) ¢ ImA and A+ p <L

Case(i) : Suppose t; < A < t; and s; > p > sy,
where (t;,5;),(t;,5;) € ImA. Then, by Proposition 2.2,
Altisi) = Alt55) = g4(m)

Case(ii) : Suppose A\ < t, and p > s,, where ({r,s,)
is the least element in ImA. Then, by Proposition 2.2,
Altrsy) = 6 = 4G,

Case(iii) : Suppose to < A and sp > u, where (o, so)
is the greast element of ImA. Then, by Proposition 2.2,
A = Altisi) = (e},

Hence, in any cases, for each (A\,u) € I x I with
A+ p < 1, the (), p)-level subgroup is one of {A®t:59)},
where (t;,5;) € ImA. [ |

Proposition 2.3. Any subgroup H of a group G can be
realized as a level subgroup of some IFG of G.

Proof. We define a complex mappings A = (ua,va) :
G — I x I as follows: for each x € G,

Al(z)=(t,s) if z€ H
and

A(z)y=(0,1) if =¢ H,
where (t,s) € I x I such that t + s < 1. Then clearly
A= (pa,va) € IFS(G). Let z,y € G.

Case (i): Suppose z,y € H. Then zy € H. Thus

pa(ey) = pa(@) = paly) = t and valoy) = valz) =
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valy) = s. So palay) > pale) A paly) and va(zy)
va(z)Vvaly). Sincex € H, z7! € H. Thus pa(z™!) =
and va(z™!) = 5. So pa(z™!) > palz) and va(z™)
I/A(.T).

Case (ii): Suppose z € H and y ¢ H. Then zy ¢ H.
Thus ua() = b, paly) = paley) = 0 and va(z) =
s, va(y) = va(zy) = 1. So palzy) > pa(z) A paly) and
) > pa(z)

IN = IN

valzy) <wva(z)Vva(y). Also, we have pa(z
and va(z71) < wva(x).

Case (iii): Suppose z ¢ H and y € H. Then, we have
the same ones as results of case (ii).

Case (iv): Suppose ¢ ¢ H and y ¢ H. Then xy
may or may not belong to H. In any case, we have
pa(zy) > pa(@) A paly), valzy) < va(z)Vva(y) and
pal(z™) > pa(z), va(z™!) < va(z). Hence, in all cases,
A € IFG(G). In fact, H = A®®). This completes the
proof. |

The following result is the generalization of Proposition
2.3.

Proposition 2.4. Let G be a group and let the following
be any chain of subgroups

GoCcGiC---CG=0G.
Then there exists an intuitionistic fuzzy subgroup of G
whose level subgroups are precisely the members of this
chain.

Proof. Consider the following set of real numbers:
to >t >--->t.and sg < 81 < -+ < 8y,

where (t;,5;) € I x I and ¢, + s, < 1 for each i. We define
a complex mapping A = (ua,v4) : G — I x I as follows:

A(Go) = (to, s0) and A(G:) = (ti, 1),

where G; = G4 \Gj_1 for i =1,2,--- | r. Then it is clear
that A € IFS(G) from the definition of A. Let z,y € G.

Case (i) : Suppose 2,y € G;. Then A(z) = (t;, ;) =
A(y). Since G; is a subgroup, ¢y € G;. Thus either
zy € G, or zy € G,_1. In any case, pa(zy) > ¢ =
pa(z) A pa(y) and va(zy) < s; = va(z) Vva(y). On the
other hand, 7! € G;. Thus pa(z™!) > t; = pa(z) and
valz™l) < s; = va(z).

Case (ii) : Suppose z € Gy € éj and ¢ > j. Then
A(z) = (t;, s;) and A(y) = (t;,s;). Since G; C G; and G;
is a subgroup, zy € G;. Thus

pa(zy) = ti = pa(z) A paly)
and

va(zy) < si =va(z) Vra(y).
On the other hand, z=! € C;. Thus

pala™) =t = pa(z)
and

I/A(ZB_I) <8 = I/A(ZL').

So, in either case, we can see that A € IFG(GQ).

Now, from the definition of A, ImA=
{(to,s0), - ,(tr.87)}. Thus the level subgroups of
A are given by the chain of subgroups

A(to,so) c A(tl,sl) C.-C A(tmsr) = QG.
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We claim that A%5) = G;,0 <4 < r. By the definitions
of A and AGos) | it is clear that G; ¢ AUts). Let
z € Ato%) . Then pa(z) > t; and va(z) < s;. Thus
x ¢ Gjfor j > 4. So A(z) € {(t1,81),--,(ti,80)}, Le.,
z € Gy for some k < 4. Since Gy C G;, z € G;. Thus
Atisi) © G, Hence Ats) = G;,0 < ¢ < r. This
completes the proof. ]

As a consequence of Proposition 2.4, the level sub-
groups of an IFG A form a chain. Since pa{z) < va(e)
and v4(z) > va(e) for each = € G, Al0:%0) is the smallest
level subgroup of A, where A(e) = (to, so). Thus we have
the chain

(e) = Altorso) ¢ Attis1) ..o Alms) — G, (2.1)

where tg > 1 > - > t. and s < 51 < --- < 8. We
denote this chain (2.1) of level subgroups by C(4). In
general, as all the subgroups of G do not form a chain, it
follows that not all subgroups of G are level subgroups
of a given intutionistic fuzzy subgroup. So it is an
interesting problem to find an IFG A of G which ac-
commodates as many subgroups of G as possible in C'(A4).

Proposition 2.5. Let G be a finite group such that
G = Gp, x Gp, X +-- x Gp,, where the Gp, are prime
cyclic groups of orders p;. Then there exists an A €
IFG(Q) such that C(A) is a maximal chain of length r+1.

Proof. We prove by induction on r. Suppose r = 1.
Then G = Cj,. Then, by Result 1.D, there exists an
A € IFG(G) such that A(e) = (to,s0), A(z) = (t1,81)
for each e # ¢ € G and t2 < #1 and s3 > s;. Thus
Alto:0) = () and Ats) = @. So Alteso) ¢ Altsi)
is the maximal chain and of length 2. Hence the the-
orem is true for » = 1. Now let » > 1 and suppose
the theorem is true for the integers < r — 1. Let H =
Gp, x Gp, X +--x Gp,_,. Then G = H x G,,. Define the
complex mapping A = (pa,v4) /G\—> Ix I by Ale) =
(thw(GP1) = (t1751)7 A(Gm X sz) = (t2782)’ T
A(H x Gp.) = (tr,sr), where to > t1 >t > -+ > i,
S0 < 51 <82<---<sT,t,-+si§1and(/}’p\1:Gm\(e),
Gm/@pz = Gp, X Gp, \ Gp,, and so on. Then it is clear
that A € TFS(G) from the definition of A. We will show
that A € IFG(G). Let z,y € G.

Case (i): Suppose z,y € H. Then zy € H. By the
induction,

pa(zy) > pa(@)npaly), valzy) < va(@)vvaly)

and

pa(z™) > pa(z), valz™') <valz).

Case (ii): Suppose z € H andy € G\H. Thenzy ¢ H.
Thus A(zy) = (tr, Sr)s pal(z) > tr—1,va(x) < s.—1 and
Aly) = (tr, 8:). So

pa(ry) > pa(@)npaly), valzy) <a (2)Valy)
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and
pa(™) > pa(z), valz™) <vale).

Case (iii): Suppose z € G\ H and y € H. Then, we
have the same ones as the results of case(ii).

Case (iv): Suppose z ¢ H and y ¢ H. Then also we
can easily see that

palzy) > pa(m)hualy), va(zy) <va(@)Vvaly)

and

pa(™) > pal@), valz™) <vale).

So, in either cases, A € IFG(G). Moreover, At0:50) = (e),
Altus) = @ At2:82)

= Gy X Gy, ,Abs) = H x G, . Hence
Altosso) ¢ Alus) o ... Alrs) s C(A) which is
maximal and of length r + 1. This completes the proof.
[ |

Remark 2.6. In the same way, we can find an IFG A
with the maximal C'(A) in the following cases :

(i) G is a cyclic p-group.

(ii) G is the direct product of cyclic p-group.

(iii) G is a finite abelian group.

We can easily check these cases by adopting the same
technique as proof in Proposition 2.6.

In the following example, we show that two intuition-
istic fuzzy subgroups of a group may have an identical
family of level subgroups but the intuitionistic fuzzy
subgroups may not be equal.

Example 2.7. Consider the Klein four-group G given in
Example 2.1. Let (¢;,s:) € I x I such that o > ¢ >
ts, 80 < 81 < Sy and t; + s; < 1, where ¢ = 0,1,2. We
define a complex mapping A : G — I x [ as follows :
A(e) = (t0750)’A(a) = (tlasl)v
A(b) = (tg, s2), A(ab) = (2, 52).
Then clearly A € IFG(G) and ImA= {(to, s0), (t1,51),
(t2,52)}. Moreover, the level subgroups of A are

Altaso) = {e} AlLs) = fe q}, Al252) =G,

Now let (N, ;) € I x I such that
Ao > A1 > Ag, o < p1 < e, i+ p <1,
fori=0,1,2
and
{(t()? SO)v (t17 51)’ (t2a 82)}ﬂ
{(Mo, o), (A1, 1), (A2, p2)} = @
We define a complex mapping B : G — I x I a follows :
B(e) = ()‘07 #O)a B(a) = (/\1v :LLl)v
B(b) = (\a, p2), Blab) = (Ao, pa).
Then clearly B € IFG(G). Moreover, the level subgroups
of B are

Bosuo) — {e},B(/\l"“) - {e,a},B()‘z""“) =qQ.

Hence A and B have the same family of level subgroups
but A # B.

The following is the immediate result of Definition 1.4.

Lemma 2.8. Let G be a finite group and let A € IFG(G).
If (£, 1), (t;,5;) € TmA such that At = Ati:53) | then
(ti,51) = (5, 85)-

Proposition 2.9 Let G be a finite group and let A, B €
IFG(G) with identical family of level subgroups. If ImA=
{(tOv 50)’ T (t'fv 37‘)} and ImB= {()‘Oa M0)7 o ()‘kv “k)}?
where tg > -+ > t,, 59 < -+ < 8 and Ag > - > A,
to < -+ < g, then we have

(iy r=k.

(i) Altis) = BQRone) 0 <4 <.

(iii) if z € G such that A(z) = (t;, si),

then B(z) = (A, 1),0 <i <.

Proof. (i) By corollary 2.2, the only level subgroups of
A and B are the two families {A¢+5)} and {BGw#},
Hence, by hypothesis, r = k.

(ii) By (i) and corollary 2.2, there exist two chains of
level subgroups :

A(t0150) C A(tlvsl) C - C A(trvsv‘) =G
and
BRospo) - RO ... BOwrr) = 3.

From this, it follows clearly that
Suppose (t;,s;), (tj,s;) € ImA such that t; > t; and
5; > s;. Then
Atasi) = Altyss) (2.2)
Suppose (A, 14:), (A, ;) € ImB such that A; > X; and
pi > pj. Then
BGan) — gOmd), (2.3)
Since {Ats)} = {BRa#)} it is clear that Alfo-*0) =
BOo:ro) | Now by hypothesis, Al1:51) = BWi#i) for some
j > 0. Assume that Alus1) = BOGk) for some j > 1.
Again, we have that B — Al0s) for some t; >ty
and s; < s1. It is clear that (¢;,s;) = (t1,s1). Thus, by
(2.2),

AGis) — gasm) = BOykg) (2.4)

Also, by (2.3),
Bsts) = Alt1s1) — ACisi), (2.5)

However, (2.4) and (2.5) contradict one another as the
inclusions are both proper inclusions. So, we must have

that
Altis) = Q)
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The rest of the proof follows by induction on ¢ by using

arguments exactly on the same lines as above. Hence
Altsi) = BQyomg) <4 <,
(iii) Let € G such that A(z) = (#,s) and

B(z) = (A\j, t5). Then, by (ii), At = B#i). Since
z € Altosi) g ¢ BOow) Thus B(z) = (\j, ), where
A; > X and p; < g By (2.3), BRows) ¢ BRawid) By
(ii), BRs#s) = Altis) . Since'z € BPama) g e Altinsi),
Thus A(z) = (t;,s;), where ¢t; > t; and s; < s;. By
(2.2), AGisi) < A8 On the other hood, by (ii),
Altiss) = BQwm) and A®%5) = BOsors) | Consequently,
we have that BO##) ¢ BGo#i)  §o BRimi) = Braoms),
Hence, by Lemma 2.8, (A, ;) = (A, ;). This completes
the proof. [ |

Theorem 2.10. Let A, B be two IFGs of a finite group
G such that the families of level subgroups of A and B
are identical. Then A = B if and only if ImA = ImB.

Proof. (=) : It is obvious.

(<) Suppose ImA = ImB. Let
ImA = {(to,s0), " ,(tr,sr)} and let ImB =
{(Mos0), -+, Ar, pir)} such that tg > -+ > tr,80 <
e < spand Ag < - < Ap g > cce > e Since

(Mo, 20) € ImB and ImA = ImB, (g, o) = (tk,, ko) for
some kg. Suppose (tk,, Sko) # (to, so). Then tg, < t1 and
Sky > S1. Since (Aq,p1) € ImA, (A, 1) = (tky, Sky) for
some ki. Thus we have A\g > Ay and pg < pp implies
that 5, > tg, and sg, < Sg,.

By proceeding in this way, we have

thy > thy >0 >t and Sp, < Spy < 0 < Sks

where (Ao, o) = (tko» Sko ) the > to and sg, < sg. They
contradict the fact that ImA = ImB. So we must have
that (Ao, o) = (to, So). Arguing in this manner, we ob-
tain that

(Ao, pts) = (ts,83), 0<i<r

Now let go,---, g, be distinct elements of G such that
A(g;) = (t;,8),0 < ¢ < r. Then, by Proposition 2.9,
B(gz) = (/\“/j,l),o < 1 <r. Since ()\Z,,ul) = (ti,si),
A(z) = B(z) for each ¢ € G. Hence A = B. This
completes the proof. ]

The following result is easy to prove.

Lemma 2.11. Let G be a finite group. We define a
relation ~ on IFG(G) as follows : for any A, B € IFG(G),
A ~ B if and only of they have an identical family of
level subgroups. Then ~ is an equivalence relation on

IFG(G).

We note that by Example 2.5, two elements A and B
of IFG(G) may be such that A ~ B but A and B need
not be equal.

For each A € IFG(G), let [A] denote the equivalence
class of A. If G is finite, then the number of possible
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distinet level subgroups of G is finite since each level
subgroup is a subgroup of G in the usual sense. By
Proposition 2.3, since any subgroup of a group G can
be realized as the level subgroup of some intuitionistic
fuzzy subgroup of G, it follows that the number of
possible chains of level subgroups is also finite. As each
equivalence class is characterized completely by its chain
of level subgroups, we have the following result.

Corollary 2.11. Let G be a finite group and let ~ be
the equivalence relation on IFG(G) defined by Lemma
2.11. Then IFG(G)/ ~ is finite.

Theorem 2.12. Let G be a finite group and let
LG(G) = {AWM# 1 ABK s a level subgroup of G
and A € IFG(G)}. Let SG(G) denote the set of all
subgroups of G. Then there is a one-to-one correspon-
dence between SG(G) and LG(G)/ ~, where ~ denote a
suitable equivalence relation on LG(G).

Proof. Let ~ be the equivalence relation on IFG(G) de-
fined by Lemma 2.11. Then IFG(G)/ ~ is an partition of
G. Thus

IFG(G) = [S1] U [S2] U - - - [Sk),

where [5;],1 <4 < k, are all distinct equivalence classes.
Let us denote

(A 0 <j< A and tj+s; <1}

to be the chain of level subgroups associated with the
equivalence class [S;]. Then LG(G)/ ~ is a finite set give
by

LG(G)/ ~={[A%*)]:0<j <) and 1<i<k},

where [Agtj’sj )] denotes the equivalence class containing
A(_tjvsj)

; .

From Proposition 2.3, it follows that each subgroup

of G is of the form Agtj 1) We define a mapping f :
LG(G@)/ ~— SG(G) as follows :

AL = A,

Then we can easily show that f is bijective. This com-
pletes the proof. [ ]

4. Characterization of intuitionistic fuzzy
subgroups of finite cyclic groups.

Proposition 3.1. Let G be a cyclic p-group of order p™,
where p is a prime. Let A € IFG(G), let z,y € G and let
O(z) denote the order of z.
(1) If O(z) > O(y), then A(y) > A(z),
Le., pa(y) > pa(z) and va(y) < va(z).
(2) If O(z) = O(y), then A(z) = A(y).

Proof. We prove by induction on n. Suppose n = 1.
Then O(G) = p. Thus the theorem is true by Result 1.13.
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Let n > 1 and suppose the theorem is true for all integers

< n—1. Let H be a subgroup of order p"~! and let
z,y € G.
Case (i): Suppose z,y € H. Then, by the induction,

the results follow.

Case (ii): Suppose z ¢ H and y € H. Then O(z) = p"
and O(y) = p”, where r < n — 1. Thus z is a generator of
G. So there exists an integer [ such that y = z!. Hence

1a(y) = pa(@) Ao A pa(z)(l times) > pa(z)

and

va(y) =va(z) V- Vva(z)(l times) < va(z).
Case (iii) : Suppose z € H and y ¢ H. Then, we have
the same ones as the result of case(ii).

Case (iv) : Suppose z ¢ H and y ¢ H. Then O(x) =
O(y) = p™. Thus z and y are generators of G . So there
exist integers [ and m such that y = z! and = = y™.
Hence

pa(@) > paly) A A paly)(mtimes) > pa(y),

Va(2) S va(m) V-V valy)(mtimes) < va(y)
and

pa(y) = pa(z) A A pa(z)(itimes) > pa(z),

va(y) =va(z) V- Vva(e)(ltimes) < wva(z).
Therefore pa{z) = paly) and va(z) = valy), ie,
A(z) = A(y). This completes the proof. n

Proposition 3.1 is not true in general as shown in the
following examples.

Example 3.2. Consider the Kleins 4 - group :

G ={a,b:a® =b* = (ab)? = €}.
We define a complex mapping A = (ua,va): G — I x 1T
as follows:
Ale) = (to,s0), Ala) = (tr,51), AD) = (L2, s2) = A(ab),

where (to,s0) > (t1,s1) > (f2,82) and t; +5; < 1 for
i=0,1,2.

Then clearly A € IFG(G).
Ofa) = O(b), A(a) # A(b).

For a cyclic group it can be seen that O(a) = O(b)
implies A(a) = A(b). But O(a) # O(b) may also imply
A(a) = A(b).

But, even though

Example 3.3. Let G = (a) be a cyclic group of order 6.

We define a complex mapping A = (pa,va): G — I x T
as follows:
A(e) = (to, s0), Ala) = A(a®) = A(a®) = (1, 51),
Aa®) = A(a*) = (t2,52),

where (tg,s0) > (t1,81) > (¢2,82) and ¢; + s, < 1 for
i =0,1,2. Then clearly A € IFG(G) and O(a®) # O(a).
But A(a) = A(a?).

Now we give the characterization of all IFGs of a finite
cyclic group in the following. In fact, the following result
is the spacial case of Proposition 2.4.

Theorem 3.4. Let G be a finite cyclic group
and let A € IFS(G). Then A is an IFG of G if
and only if there exists a maximal chain of sub-
groups (e) = Go C Gy C - C G = G such
that for any (to,SQ) (t1,81) " (tT‘7s'r’) € Im(A)
with tg > ¢, > -+ > t. and sg < 81 < -+ < 8,
Ale) = (to,0), A(G1) = (t1,51)," A(G,) (tr,sr),
where G; = G; \ Gy fori = 1,2, -

Suppose the necessary condition holds.
We define a complex mapping A = (pa,va) : G — I x 1
by A(e) = (to, s0), A(G1) = (t1,51), . A(Gr) = (tr,s0).
Then clearly A € IFS(G) from the definition of A. Let
z,y € G.

Proof. («):

Case (i) : z,y € G; but not in G;_;. Then A(z) =
Aly) = (ti,s:) and zy € G; or Gyj—y. Thus pa(zy) >
t = pa(z) A paly) and va(zy) < 5 = va(z) V val).
Moreover, ua(z™') > t; = pa(z) and va(z™1) S s =
va(zx).

Case (ii) : Suppose z € G; but not in G;_; and y € G,

but not G;_;, where ¢ > j. Then A(z) = (¢;,s;) and
Aly) = (t;,85)- Thus pa(wy) > t; = pa(z) A paly) and
va(zy) <t =va(x) Vraly). Also pa(e™) 2t = pa()
and va(z™!) <t; = va(z). Hence, in all, A € IFG(G).
(=) : Suppose A € IFG(G). Then, by Corollary 2.2,
Alto:so) ... A(rsr) are the only level subgroups of A,
where {(t0, s0), (t1,51), -+, (try8:)} = Ln(A), to > £ >
> 1. and s < 81 < --- < 8,.. Furthermore, the level
subgroups form a chain C'( ) : Altosso) < Alt, ) C-
Altrsr)  Thus clearly, ACto-%0) = (¢) and Altrsr) = G.
Suppose C(A) is maximal and let G; = A®:%). Then
the necessary condition holds. Assume that C(A) is not
maximal. Then we redefine C(A) by introducing sub-
groups of G. Let us call this chainas Go C G1 C -+ C G,
where Gy = A%) = (¢) and G, = Alt»*") = G. Then
for each G; between Alto%0)(= Gy) and A1) (= G
for some j), A(G p i) = (tl,sl) Slmﬂarly7 for each G}, be-
tween Atti5i) and Altirusivy) (Gk) = (t1+1,sl+1) and

A(Gs) = (tra§r>~ Thus A(Go) = (to,So) (Gl) =
o= AG) = (ys), AGi) = - =
A(Gr) = (tr,s0), - LAGY) = (tr,sr), where
Gh = Gi1—Go, Go = Gy — Gy, ,Gy = Gy — Gsy,
to >t > >t and sg < 81 < --- < s,.. This completes
the proof. |

The following is the immediate result of Theorem 3.4.
Corollary 3.4. Let G be a cyclic p-group of order p”

and let A € IFS(G). Then A € IFG(G) if and only if
for each z € G with O(z) = p*, A(x) = (t;,s;), where
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1=0,1,---r,tg>t; > ->t.and s < 53 <+ < 8.

Remark 3.5. We can also prove this Corollary by using
Proposition 3.1.
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