• Title, Summary, Keyword: weather forecasting

Search Result 470, Processing Time 0.034 seconds

Estimation of Willingness To Pay for Health Forecasting Services (건강예보 서비스 제공에 대한 지불의사금액 추정)

  • Oh, Jin-A;Park, Jong-Kil;Oh, Min-Kyung
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.395-404
    • /
    • 2011
  • Weather forecasting is one of the key elements to improve health through the prevention and mitigation of health problems. Health forecasting is a potential resource creating enormous added value as it is effectively used for people. The purpose of this study is to estimate 'Willingness to Pay' for health forecasting. This survey was carried out to derive willingness to pay from 400 people who lived in Busan and Kyungnam Province and over 30 years of age during the period of July 1-31, 2009. The results showed that a 47.50% of people had intention to willingness to pay for health forecasting, and the pay was 7,184.21 won per year. Willing to pay goes higher depending on 'tax burden as to benefit of weather forecasting', 'importance of the weather forecasting in the aspect of health', 'satisfaction to the weather forecasting', and 'frequency of health weather index check'. This study followed the suggestion of the Korea Meteorological Administration generally and the values derived through surveys could be reliable. It can be concluded that a number of citizens who are willing to pay for health forecasting are high enough to meet the costs needed to provide health forecasting.

Very Short-Term Wind Power Ensemble Forecasting without Numerical Weather Prediction through the Predictor Design

  • Lee, Duehee;Park, Yong-Gi;Park, Jong-Bae;Roh, Jae Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2177-2186
    • /
    • 2017
  • The goal of this paper is to provide the specific forecasting steps and to explain how to design the forecasting architecture and training data sets to forecast very short-term wind power when the numerical weather prediction (NWP) is unavailable, and when the sampling periods of the wind power and training data are different. We forecast the very short-term wind power every 15 minutes starting two hours after receiving the most recent measurements up to 40 hours for a total of 38 hours, without using the NWP data but using the historical weather data. Generally, the NWP works as a predictor and can be converted to wind power forecasts through machine learning-based forecasting algorithms. Without the NWP, we can still build the predictor by shifting the historical weather data and apply the machine learning-based algorithms to the shifted weather data. In this process, the sampling intervals of the weather and wind power data are unified. To verify our approaches, we participated in the 2017 wind power forecasting competition held by the European Energy Market conference and ranked sixth. We have shown that the wind power can be accurately forecasted through the data shifting although the NWP is unavailable.

Implementation of Efficient Weather Forecasting Model Using the Selecting Concentration Learning of Neural Network (신경망의 선별학습 집중화를 이용한 효율적 온도변화예측모델 구현)

  • 이기준;강경아;정채영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1120-1126
    • /
    • 2000
  • Recently, in order to analyze the time series problems that occur in the nature word, and analyzing method using a neural electric network is being studied more than a typical statistical analysis method. A neural electric network has a generalization performance that is possible to estimate and analyze about non-learning data through the learning of a population. In this paper, after collecting weather datum that was collected from 1987 to 1996 and learning a population established, it suggests the weather forecasting system for an estimation and analysis the future weather. The suggested weather forecasting system uses 28*30*1 neural network structure, raises the total learning numbers and accuracy letting the selecting concentration learning about the pattern, that is not collected, using the descending epsilon learning method. Also, the weather forecasting system, that is suggested through a comparative experiment of the typical time series analysis method shows more superior than the existing statistical analysis method in the part of future estimation capacity.

  • PDF

Improvement of Mid/Long-Term ESP Scheme Using Probabilistic Weather Forecasting (확률기상예보를 이용한 중장기 ESP기법 개선)

  • Kim, Joo-Cheol;Kim, Jeong-Kon;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.843-851
    • /
    • 2011
  • In hydrology, it is appropriate to use probabilistic method for forecasting mid/long term streamflow due to the uncertainty of input data. Through this study, it is expanded mid/long term forecasting system more effectively adding priory process function based on PDF-ratio method to the RRFS-ESP system for Guem River Basin. For implementing this purpose, weight is estimated using probabilistic weather forecasting information from KMA. Based on these results, ESP probability is updated per scenario. Through the estimated result per method, the average forecast score using ESP method is higher than that of naive forecasting and it confirmed that ESP method results in appropriate score for RRFS-ESP system. It is also shown that the score of ESP method applying revised inflow scenario using probabilistic weather forecasting is higher than that of ESP method. As a results, it will be improved the accuracy of forecasting using probabilistic weather forecasting.

Long-Term Maximum Power Demand Forecasting in Consideration of Dry Bulb Temperature (건구온파를 오인한 장기최대전력수요예측에 관한 연구)

  • 고희석;정재길
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.10
    • /
    • pp.389-398
    • /
    • 1985
  • Recently maximum power demand of our country has become to be under the great in fluence of electric cooling and air conditioning demand which are sensitive to weather conditions. This paper presents the technique and algorithm to forecast the long-term maximum power demand considering the characteristics of electric power and weather variable. By introducing a weather load model for forecasting long-term maximum power demand with the recent statistic data of power demand, annual maximum power demand is separated into two parts such as the base load component, affected little by weather, and the weather sensitive load component by means of multi-regression analysis method. And we derive the growth trend regression equations of above two components and their individual coefficients, the maximum power demand of each forecasting year can be forecasted with the sum of above two components. In this case we use the coincident dry bulb temperature as the weather variable at the occurence of one-day maximum power demand. As the growth trend regression equation we choose an exponential trend curve for the base load component, and real quadratic curve for the weather sensitive load component. The validity of the forecasting technique and algorithm proposed in this paper is proved by the case study for the present Korean power system.

  • PDF

The Daily Peak Load Forecasting in Summer with the Sensitivity of Temperature (온도에 대한 민감도를 고려한 하절기 일 최대전력수요 예측)

  • 공성일;백영식;송경빈;박지호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.6
    • /
    • pp.358-363
    • /
    • 2004
  • Due to the weather sensitivity of the power load, it is difficult to forecast accurately the peak power load of summer season. We improve the accuracy of the load forecasting considering weather condition. We introduced the sensitivity of temperature and proposed an improved forecasting algorithm. The proposed algorithm shows that the error of the load forecasting is 1.5%.

Development of an Efficient Small-sized Weather-conditions Forecasting Server (효율적인 소형 기상예보서버 개발)

  • Kim, Sang-Chul;Wang, Gi-Nam;Park, Chang-Mock
    • IE interfaces
    • /
    • v.13 no.4
    • /
    • pp.646-657
    • /
    • 2000
  • We developed an efficient small sized weather condition forecasting system (WFS). A cheap NT-server was utilized for handling a large amount of data, while traditional WFS has conventionally relied on Unix based workstation server. The proposed WFS contains automatic weather observing system (AWS). AWS was designed for collecting weather conditions automatically, and it was linked to WFS in order to provide various weather condition information. The existing two phase scheme and chain code algorithm were used for transforming AWS's data into WFS's data. The WFS's data were mapped into geometric information system using various display techniques. Finally the transformed WFS's data was also converted into JPG (Joint Photographic Group) data type, and the final JPG data could be accessible by others though Internet. The developed system was implemented using WWW environment and has provided weather condition forecasting information. Real case is given to show the presented integrated WFS with detail information.

  • PDF

FLASH FLOOD FORECASTING USING ReMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART I : MODEL DEVELOPMENT

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.113-122
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict flash floods. In this study, a Quantitative Flood Forecasting (QFF) model was developed by incorporating the evolving structure and frequency of intense weather systems and by using neural network approach. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as lifetime, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. All these processes stretched leadtime up to 18 hours. The QFF model will be applied to the mid-Atlantic region of United States in a forthcoming paper.

  • PDF

Monthly Dam Inflow Forecasts by Using Weather Forecasting Information (기상예보정보를 활용한 월 댐유입량 예측)

  • Jeong, Dae-Myoung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.449-460
    • /
    • 2004
  • The purpose of this study is to test the applicability of neuro-fuzzy system for monthly dam inflow forecasts by using weather forecasting information. The neuro-fuzzy algorithm adopted in this study is the ANFIS(Adaptive neuro-fuzzy Inference System) in which neural network theory is combined with fuzzy theory. The ANFIS model can experience the difficulties in selection of a control rule by a space partition because the number of control value increases rapidly as the number of fuzzy variable increases. In an effort to overcome this drawback, this study used the subtractive clustering which is one of fuzzy clustering methods. Also, this study proposed a method for converting qualitative weather forecasting information to quantitative one. ANFIS for monthly dam inflow forecasts was tested in cases of with or without weather forecasting information. It can be seen that the model performances obtained from the use of past observed data and future weather forecasting information are much better than those from past observed data only.

FLASH FLOOD FORECASTING USING REMOTELY SENSED INFORMATION AND NEURAL NETWORKS PART II : MODEL APPLICATION

  • Kim, Gwang-seob;Lee, Jong-Seok
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.123-134
    • /
    • 2002
  • A developed Quantitative Flood Forecasting (QFF) model was applied to the mid-Atlantic region of the United States. The model incorporated the evolving structure and frequency of intense weather systems of the study area for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters associated with synoptic atmospheric conditions as Input. Here, we present results from the application of the Quantitative Flood Forecasting (QFF) model in 2 small watersheds along the leeward side of the Appalachian Mountains in the mid-Atlantic region. Threat scores consistently above 0.6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 40% and up to 55 % were obtained.

  • PDF