• Title, Summary, Keyword: weak attractor

Search Result 7, Processing Time 0.023 seconds

Weak attractors and Lyapunov-like functions

  • Kim, Jong-Myung;Kye, Young-Hee;Lee, Keon-Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.457-462
    • /
    • 1996
  • Recently Hurley [3] proved that if A is a weak attractor of a discrete dyanamical system f then there exists a Lyapunov-like function for A. The purpose of this note is to study whether the converse of the above result does hold or not.

  • PDF

GLOBAL ATTRACTOR FOR A SEMILINEAR PSEUDOPARABOLIC EQUATION WITH INFINITE DELAY

  • Thanh, Dang Thi Phuong
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.579-600
    • /
    • 2017
  • In this paper we consider a semilinear pseudoparabolic equation with polynomial nonlinearity and infinite delay. We first prove the existence and uniqueness of weak solutions by using the Galerkin method. Then, we prove the existence of a compact global attractor for the continuous semigroup associated to the equation. The existence and exponential stability of weak stationary solutions are also investigated.

EXISTENCE AND LONG-TIME BEHAVIOR OF SOLUTIONS TO NAVIER-STOKES-VOIGT EQUATIONS WITH INFINITE DELAY

  • Anh, Cung The;Thanh, Dang Thi Phuong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.379-403
    • /
    • 2018
  • In this paper we study the first initial boundary value problem for the 3D Navier-Stokes-Voigt equations with infinite delay. First, we prove the existence and uniqueness of weak solutions to the problem by combining the Galerkin method and the energy method. Then we prove the existence of a compact global attractor for the continuous semigroup associated to the problem. Finally, we study the existence and exponential stability of stationary solutions.

GLOBAL ATTRACTORS FOR NONLOCAL PARABOLIC EQUATIONS WITH A NEW CLASS OF NONLINEARITIES

  • Anh, Cung The;Tinh, Le Tran;Toi, Vu Manh
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.531-551
    • /
    • 2018
  • In this paper we consider a class of nonlocal parabolic equations in bounded domains with Dirichlet boundary conditions and a new class of nonlinearities. We first prove the existence and uniqueness of weak solutions by using the compactness method. Then we study the existence and fractal dimension estimates of the global attractor for the continuous semigroup generated by the problem. We also prove the existence of stationary solutions and give a sufficient condition for the uniqueness and global exponential stability of the stationary solution. The main novelty of the obtained results is that no restriction is imposed on the upper growth of the nonlinearities.

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

LONG-TIME BEHAVIOR FOR SEMILINEAR DEGENERATE PARABOLIC EQUATIONS ON ℝN

  • Cung, The Anh;Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.4
    • /
    • pp.751-766
    • /
    • 2013
  • We study the existence and long-time behavior of solutions to the following semilinear degenerate parabolic equation on $\mathbb{R}^N$: $$\frac{{\partial}u}{{\partial}t}-div({\sigma}(x){\nabla}u+{\lambda}u+f(u)=g(x)$$, under a new condition concerning a variable non-negative diffusivity ${\sigma}({\cdot})$. Some essential difficulty caused by the lack of compactness of Sobolev embeddings is overcome here by exploiting the tail-estimates method.