• Title, Summary, Keyword: unreliability

Search Result 62, Processing Time 0.036 seconds

The Method of Selecting Landscape Control Points for Landscape Impact Review of Development Projects (개발사업의 경관영향 검토를 위한 주요 조망점 선정 방법에 관한 연구)

  • Shin, Ji-Hoon;Shin, Min-Ji;Choi, Won-Bin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.1
    • /
    • pp.143-155
    • /
    • 2018
  • The Natural Landscape Rating System was introduced in the amendment of the NATURAL ENVIRONMENT CONSERVATION ACT in 2006. For landscape preservation, the system aims to consider the effects of development projects or plans implemented in a natural landscape on skylines, scenic resources, and view corridors. Currently, a lack of consistency in standards for determining Landscape Control Points (LCP) to assess landscape impact lowers the accuracy and reliability of the assessment results. As the perception of and the impact on a landscape varies, depending on the location of the LCP, it is necessary to establish a reasonable set of criteria to select viewpoints and avoid unreliability in the assessment due to unclear criteria. The intent of this study is to propose an objective and reasonable set of criteria for LCP selection to effectively measure the impact on the landscape from development projects that anticipate a change in the landscape and, ultimately, to suggest basic analysis methods to assess the landscape impact of development projects and to monitor the landscape in the future. Among the development projects affecting natural landscapes, as reported in the statement of the environmental impact assessment, cases of construction of a single building or other small-scale development projects were studied. Four spot development projects were analyzed in depth for their landscape impacts, in order to make recommendations for the LCP selection procedure, which aims to widen the scope of selection according to the direction of viewpoints from the target site. The existing results of analysis based on LCP have limitations because they failed to cover the viewshed of the target buildings when there are topographical changes in the surroundings. As a solution to this problem, a new viewshed analysis method has been proposed, with a focus on the development site and target buildings, rather than viewpoints, as used in past analysis.

A Smoothing Data Cleaning based on Adaptive Window Sliding for Intelligent RFID Middleware Systems (지능적인 RFID 미들웨어 시스템을 위한 적응형 윈도우 슬라이딩 기반의 유연한 데이터 정제)

  • Shin, DongCheon;Oh, Dongok;Ryu, SeungWan;Park, Seikwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.1-18
    • /
    • 2014
  • Over the past years RFID/SN has been an elementary technology in a diversity of applications for the ubiquitous environments, especially for Internet of Things. However, one of obstacles for widespread deployment of RFID technology is the inherent unreliability of the RFID data streams by tag readers. In particular, the problem of false readings such as lost readings and mistaken readings needs to be treated by RFID middleware systems because false readings ultimately degrade the quality of application services due to the dirty data delivered by middleware systems. As a result, for the higher quality of services, an RFID middleware system is responsible for intelligently dealing with false readings for the delivery of clean data to the applications in accordance with the tag reading environment. One of popular techniques used to compensate false readings is a sliding window filter. In a sliding window scheme, it is evident that determining optimal window size intelligently is a nontrivial important task in RFID middleware systems in order to reduce false readings, especially in mobile environments. In this paper, for the purpose of reducing false readings by intelligent window adaption, we propose a new adaptive RFID data cleaning scheme based on window sliding for a single tag. Unlike previous works based on a binomial sampling model, we introduce the weight averaging. Our insight starts from the need to differentiate the past readings and the current readings, since the more recent readings may indicate the more accurate tag transitions. Owing to weight averaging, our scheme is expected to dynamically adapt the window size in an efficient manner even for non-homogeneous reading patterns in mobile environments. In addition, we analyze reading patterns in the window and effects of decreased window so that a more accurate and efficient decision on window adaption can be made. With our scheme, we can expect to obtain the ultimate goal that RFID middleware systems can provide applications with more clean data so that they can ensure high quality of intended services.