• Title/Summary/Keyword: unmixed bipartite graph

Search Result 1, Processing Time 0.035 seconds


  • Mohammadi, Fatemeh;Moradi, Somayeh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.977-986
    • /
    • 2015
  • Let G be a graph on the vertex set $V(G)=\{x_1,{\cdots},x_n\}$ with the edge set E(G), and let $R=K[x_1,{\cdots},x_n]$ be the polynomial ring over a field K. Two monomial ideals are associated to G, the edge ideal I(G) generated by all monomials $x_i,x_j$ with $\{x_i,x_j\}{\in}E(G)$, and the vertex cover ideal $I_G$ generated by monomials ${\prod}_{x_i{\in}C}{^{x_i}}$ for all minimal vertex covers C of G. A minimal vertex cover of G is a subset $C{\subset}V(G)$ such that each edge has at least one vertex in C and no proper subset of C has the same property. Indeed, the vertex cover ideal of G is the Alexander dual of the edge ideal of G. In this paper, for an unmixed bipartite graph G we consider the lattice of vertex covers $L_G$ and we explicitly describe the minimal free resolution of the ideal associated to $L_G$ which is exactly the vertex cover ideal of G. Then we compute depth, projective dimension, regularity and extremal Betti numbers of R/I(G) in terms of the associated lattice.