• Title, Summary, Keyword: ultrasonic energy

Search Result 582, Processing Time 0.042 seconds

Fabrication and Microstructures of Al-Pb Alloy in the Ultrasonic Vibration (초음파진동 조사장 내에서 Al-Pb계 합금의 제조 및 조직)

  • Park, Hun-Berm
    • Journal of Korea Foundry Society
    • /
    • v.22 no.5
    • /
    • pp.238-244
    • /
    • 2002
  • Water and oil were completely synthesised with ultrasonic vibration energy irradiation. Pure Pb were added into Al melt during irradiated the ultrasonic vibration energy in 750. And the ultrasonic vibration energy was applied to Al-Pb melt to enhance the miscibility. Microstructural analysis, thermal analysis and X-ray diffraction analysis were carried out to evaluate the effect of the ultrasonic vibration energy on the castability and microstructural reliability. (1) Using the ultrasonic vibration energy irradiation, the complete mixing of water and oil was obtained. (2) The microstructure was refined by the application of ultrasonic vibration energy in Al-Pb alloys. (3) Relatively large Pb particles, $5{\mu}m$ were most distributed alone the grain boundaries with fine Pb particles evenly distributed in the matrix. (4) The solubility of Ph in Al-Pb alloys was increases up to 5% with the application of ultrasonic vibration energy.

Effect of Ultrasonic Energy in the Engine using Diesel Fuel Blended Rape-seed Oil (유채혼합유를 사용하는 기관에서 초음파에너지의 영향)

  • Kwon, K.R.;Ko, K.N.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.5-10
    • /
    • 2005
  • The effect of ultrasonic energy for diesel fuel and blend oil has been revealed in this paper. The experimental setup consisted of a high speed diesel engine with 4 cylinder, dynamometer and ultrasonic fuel feeding system. Ultrasonic energy was added to diesel fuel and blend oil, which is a blend of diesel fuel and rape-seed oil. As engine speed was changed, engine torque and power, brake specific fuel consumption and thermal efficiency were measured in detail. As the results, by adding ultrasonic energy to diesel fuel and blend oil, the engine performance was improved in range of the experiment. The effect of improvement on brake specific fuel consumption and thermal efficiency for blend oil is higher than that for diesel fuel. When ultrasonic energy was added to diesel fuel or blend oil, a rise in engine torque for diesel fuel was higher than that for blend oil, but the effect of ultrasonic energy was small. From these results, it may be desirable to add ultrasonic energy to blend oil for the use of blend oil to diesel engine.

  • PDF

A Study on the Chamical and Physical Characteristics of Ultrasonic-Energy-Added Diesel Fuel (초음파 에너지 부가 지젤연료의 화학적, 물리적 특성에 관한 연구)

  • 최두석;윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.147-155
    • /
    • 1996
  • This study investigated the characteristics of ultrasonic-energy-added diesel fuel. We compared the characteristics used H-NMR spectrum, FT-IR spectrum, viscosity and surface tension between conventional diesel fuel and ultrasonic-energy-added diesel fuel. The result are obtained as follow : We knew that ultrasonic energy result to reduce BI and weaken viscosity and surface tension. Also, the ultrasonic energy caused to reduce aromatics Ha and increase Alkanes Hγ. The effect of ultrasonic-energy-added dieselfuel was principally caused by change of chemical structures and a physical characteristics.

  • PDF

A Study on the Performance of EFI Engine Used Ultrasonic Energy Adding Fuel System(I) -Attaching Importance to Fuel Characteristics for Ultrasonic- (초음파연료공급장치를 이용한 EFI 기관의 성능에 관한 연구(I) -초음파에 의한 연료의 물성변화를 중심으로-)

  • 윤면근;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.42-49
    • /
    • 1997
  • This experimental study was performed to find fuel property variations of the ultrasonic energy adding gasoline and improve the spray characteristics of the multipoint injector for EFI engine. The cause and effect of the characteristic improvement of the ultrasonic energy adding fuel was found out by the chemical structure analysis (NMR, IR), distillation and viscosity test. The results are obtained that the chemical property of gasoline organizition was changed aromatics to paraffins and branch index as the physical characteristics of gasoline were improved by ultrasonic energy. There were higher distillation and lower viscosity in ultrasonic energy adding gasoline.

  • PDF

Viscosity Characteristics of Waste Cooking Oil with Ultrasonic Energy Irradiation

  • Kim, Tae Han;Han, Jung Keun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.6
    • /
    • pp.429-433
    • /
    • 2012
  • Purpose: While rapeseed oil, soy bean oil, palm oil and waste cooking oil are being used for biodiesel, the viscosity of them should be lowered for fuel. The most widely used method of decreasing the viscosity of vegetable oil is to convert the vegetable oil into fatty acid methyl ester but is too expensive. This experiment uses ultrasonic energy, instead of converting the vegetable oil into fatty acid methyl ester, to lower the viscosity of the waste cooking oil. Methods: For irradiation treatment, the sample in a beaker was irradiated with ultrasonic energy and the viscosity and temperature were measured with a viscometer. For heating treatment, the sample in a beaker was heated and the viscosity and temperature were measured with a viscometer. Kinematic viscosity was calculated by dividing absolute viscosity with density. Results: The kinematic viscosity of waste cooking oil and cooking oil are up to ten times as high as that of light oil at room temperature. However, the difference of two types of oil decreased by four times as the temperature increased over $83^{\circ}C$. When the viscosity by the treatment of ultrasonic energy irradiation was compared to one by the heating treatment to the waste cooking oil, the viscosity by the treatment of ultrasonic energy irradiation was lower by maximum of 22% and minimum of 12%, than one by the heating treatment. Conclusions: Ultrasonic energy irradiation lowered the viscosity more than the heating treatment did, and ultrasonic energy irradiation has an enormous effect on fuel reforming.

Performance Characteristics of a Diesel Engine Using the Change of Injection Nozzle Type and Ultrasonic-Energy-Added System(I) (분사노즐 형상 변화와 초음파 에너지 부가장치를 이용한 디젤기관의 성능특성(I))

  • 최두석;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.160-170
    • /
    • 1997
  • The objective of this study is to investigate the atomization characteristics and the performance characteristics of a C. I. engine by using the changes of the injection nozzle type and the ultrasonic-energy-added system. In order to evaluate the effect of ultrasonic energy and of change of injection nozzle type in the performance characte- ristics of a diesel engine, measurements of droplet size of diesel fuel were carried out by using Malvern system. In all types of injection nozzles, SMD of the ultrasonic- energy -added diesel fuel was smaller than that of the conventional diesel fuel and the more injection pressure increased, the more SMD decreased. There was a small increase in SMD with the distance from injection nozzle under all conditions of the injection nozzle types. The minimum SMD was found in the injection nozzle of B type. In the diesel engine test, there were three results about the engine performance. Compared with the injection nozzle of A type, B type had excellent effects in the engine performance. The most excellent effects about the engine performance were obtained in the case of ultrasonic-energy-added diesel fuel. In addition, the torque diagram in the case of ultrasonic-energy-added diesel fuel was more stable and periodical than others.

  • PDF

The Correlation between the Ultrasonic Backscattered Energy and the Applied Stress in Al material (Al재료(材料)에서 Ultrasonic Backscattered Energy와 Stress와의 상호관계(相互關係))

  • Park, J.H.;Park, C.S.;Lim, H.T.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.7 no.1
    • /
    • pp.32-41
    • /
    • 1987
  • As a new device of stress monitoring method, ultrasonic backscattering method has been used to aluminium samples with various grain sizes at rayleigh critical angle in order to observe the relationships between applied stress and ultrasonic backscattered energy. It was found that the ultrasonic backscattered energy was observed to decrease as the grain size increased at the given applied stress. At the same grain size, the ule ultrasonic backscattered energy increased with increasing the applies stress. Through this study, we provided some possibility to evaluate stresses in materials under loads nondestructively, and this method is expected to be used as a new stress monitoring device.

  • PDF

A Study on the Alkali Hydrolysis of PET fabric with Ultrasonic Application(I) - Decomposition Rate Constant and Activation Energy - (초음파를 적용한 PET 직물의 알칼리 가수분해에 관한 연구(I) - 분해속도상수와 활성화 에너지-)

  • 서말용;조호현;김삼수;전재우;이승구
    • Textile Coloration and Finishing
    • /
    • v.14 no.4
    • /
    • pp.214-222
    • /
    • 2002
  • In order to give a silk-like touch to PET fabrics, the PET fabrics were treated with NaOH alkaline solution in various conditions. In alkaline treatment, the liquor flow type pilot weight reduction apparatus with magnetostrictive ultrasonic transducer was used for the study. The weight loss of PET fabrics hydrolyzed in 4% and 6% NaOH solution, at $95^\circ{C}$ and $99^\circ{C}$ for 60min. with ultrasonic application showed 3.7~4.6% higher than that of treated fabric without ultrasonic application. From the difference of specific weight loss, the treatment condition of the maximum of hydrolyzation effect appeared at $95^\circ{C}$ in $4^\circ{C}$ and at $90^\circ{C}$ in 6% NaOH solution, respectively. During the alkali hydrolysis of PET fabrics, the decomposition rate constant(k) increased exponentially with the treatment temperature and were not related with ultrasonic cavitation. The activation energy$(E_a)$ in decomposition of PET fabrics were 21.06kcal/mol with ultrasonic application and 21.10kcal/mol without ultrasonic application. The ultrasonic application gave a little higher value of the activation entropy$(\Delta{S}^\neq)$ and a little lower value of Gibbs free energy$(\Delta{S}^\neq)$ compared with not used ultrasonic apparatus.

Development of ultrasonic transducer system for wireless power transfer Part 1: Transmitter development (무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발)

  • Youm, Woo-Sub;Hwang, Gunn;Lee, Sung-Q
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.771-776
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention of not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation for the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6% at 2m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfer distance.

  • PDF

Development of Ultrasonic Transducer System for Wireless Power Transfer Part 1 : Transmitter Development (무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발)

  • Youm, Woo-Sub;Hwang, Gunn;Yang, Woo-Seok;Lee, Sung-Q
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.845-852
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention from not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation on the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100 mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6 % at 2 m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfering distance.