• Title, Summary, Keyword: tyrosine kinases inhibitor

Search Result 32, Processing Time 0.054 seconds

Regulation of $Ca_v3.2Ca^{2+}$ Channel Activity by Protein Tyrosine Phosphorylation

  • Huh, Sung-Un;Kang, Ho-Won;Park, Jin-Yong;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.365-368
    • /
    • 2008
  • Calcium entry through $Ca_v3.2Ca^{2+}$ channels plays essential roles for various physiological events including thalamic oscillation, muscle contraction, hormone secretion, and sperm acrosomal reaction. In this study, we examined how protein tyrosine phosphatases or protein tyrosine kinases affect $Ca_v3.2Ca^{2+}$ channels reconstituted in Xenopus oocytes. We found that $Ca_v3.2$ channel activity was reduced by 25% in response to phenylarsine oxide (tyrosine phosphatase inhibitor), whereas it was augmented by 19% in response to Tyr A47 or herbimycin A (tyrosine kinase inhibitors). However, other biophysical properties of $Ca_v3.2$ currents were not significantly changed by the drugs. These results imply that $Ca_v3.2$ channel activity is capable of being increased by activation of tyrosine phosphatases, but is decreased by activation of tyrosine kinases.

Involvement of Src Family Tyrosine Kinase in Apoptosis of Human Neutrophils Induced by Protozoan Parasite Entamoeba histolytica

  • Sim, Seo-Bo;Yu, Jae-Ran;Lee, Young-Ah;Shin, Myeong-Heon
    • The Korean Journal of Parasitology
    • /
    • v.48 no.4
    • /
    • pp.285-290
    • /
    • 2010
  • Tyrosine kinases are one of the most important regulators for intracellular signal transduction related to inflammatory responses. However, there are no reports describing the effects of tyrosine kinases on neutrophil apoptosis induced by Entamoeba histolytica, In this study, isolated human neutrophils from peripheral blood were incubated with live trophozoites in the presence or absence of tyrosine kinase inhibitors. Entamoeba-induced receptor shedding of CD16 and PS externalization in neutrophils were inhibited by pre-incubation of neutrophils with the broad-spectrum tyrosine kinase inhibitor genistein or the Src family kinase inhibitor PP2. Entamoeba-induced ROS production was also inhibited by genistein or PP2, Moreover, genistein and PP2 blocked the phosphorylation of ERK and p38 MAPK in neutrophils induced by E. histolytica. These results suggest that Src tyrosine kinases may participate in the signaling event for ROS-dependent activation of MAPKs during neutrophil apoptosis induced by E. histolytica.

Role of Tyrosine Kinases in Vascular Contraction in Deoxycorticosterone Acetate-Salt Hypertensive Rats

  • Yeum, Cheol-Ho;Jun, Jae-Yeoul;Choi, Hyo-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.547-553
    • /
    • 1997
  • It has been known that activation of tyrosine kinases is involved in signal transduction. Role of the tyrosine kinase in vascular smooth muscle contraction was examined in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Male Sprague-Dawley rats underwent uninephrectomy, one week after which they were subcutaneously implanted with DOCA (200 mg/kg) and supplied with 1% NaCl and 0.2% KCl drinking water for $4{\sim}6$ weeks. Control rats were treated the same except for that no DOCA was implanted. Helical strips of carotid arteries were mounted in organ baths for measurement of isometric force development. Genistein was used as a tyrosine kinase inhibitor. Concentration-response curves to 5-hydroxytryptamine (5-HT) shifted to the right by genistein in both DOCA-salt hypertensive and control rats. Although the sensitivity to genistein was similar between the two groups, the maximum force generation by 5-HT was less inhibited by genistein in arteries from DOCA-salt hypertensive rats than in those from controls. Genistein-induced relaxations were attenuated in arteries from DOCA-salt rats. Genistein affected the contraction to phorbol 12, 13-dibutyrate (PDBu) neither in DOCA-salt nor in control arteries. These observations suggest that tyrosine kinase is involved in 5-HT-induced vascular contraction, of which role is reduced in DOCA-salt hypertension.

  • PDF

Characterization of Protein Kinases Activated during Treatment of Cells with Okadaic Acid

  • Bogoyevitch, Marie A.;Thien, Marilyn;Ng, Dominic C.H.
    • BMB Reports
    • /
    • v.34 no.6
    • /
    • pp.517-525
    • /
    • 2001
  • Six renaturable protein kinases that utilize the myelin basic protein (MBP) as a substrate were activated during prolonged exposure of cardiac myocytes to okadaic acid (OA). We characterized the substrate preference and activation of these kinases, with particular emphasis on 3 novel kinases-MBPK-55, MBPK-62 and MBPK-87. The transcription factors c-Jun, Elk, ATF2, and c-Fos that are used to assess mitogen-activated protein kinase activation were all poor substrates for these three kinases. MAPKAPK2 was also not phosphorylated. In contrast, Histone IIIS was phosphorylated by MBPK-55 and MBPK-62. These protein kinases were activated in cultured cardiac fibroblasts, H9c2 cardiac myoblasts, and Cos cells. High concentrations (0.5 to $1\;{\mu}M$) of OA were essential for the activation of the protein kinases in all of the cell types examined, whereas calyculin A [an inhibitor of protein phosphatase 1 (PP1) and PP2A], cyclosporin A (a PP2B inhibitor), and an inactive OA analog all failed to activate these kinases. The high dose of okadaic acid that is required for kinase activation was also required for phosphatase inhibition, as assessed by immunoblotting whole cell lysates with anti-phosphothreonine antibodies. A variety of chemical inhibitors, including PD98059 (MEK-specific), genistein (tyrosine kinase-specific) and Bisindolylmaleimide I (protein kinase C-specific), failed to inhibit the OA activation of these kinases. Thus, MBPK-55 and MBPK-62 are also Histone IIIS kinases that are widely expressed and specifically activated upon exposure to high OA concentrations.

  • PDF

UV-responsive intracellular signaling pathways: MAPK, p53, and their crosstalk

  • Matsuda, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.229-232
    • /
    • 2002
  • There are two distinct UV-responsive signaling pathways in UV-irradiated mammalian cells, i.e., the DNA damage-dependent and -independent pathways. The former occurs in nucleus and results in growth arrest and apoptosis via post-translational modification of p53. The latter is initiated by oxidative stress and/or by damages in cell membrane or cytoplasm, which activate signaling cascade through intracellular molecules including mitogen activated protein kinases (MAPK). In normal human fibroblastic cells, all of MAPK family members, extracellular signal-related kinases (ERK), c-Jun N-terminal kinases (JNK) and p38, were rapidly phosphorylated following UV-irradiation. ERK phosphorylation was suppressed by an inhibitor of receptor tyrosine kinases (RTK). As ERK usually responds to mitogenic stimuli from RTK ligands, UV-induced ERK phosphorylation may be linked to the proliferation of survived cells. In contrast, phosphorylation of JNK and p38, as well as apoptosis, were modulated by the level of UV-generated oxidative stress Therefore, JNK and p38 may take part in oxidative stress-mediated apoptosis. Phosphorylation of p53 at Ser and Thr residues are essential for stabilization and activation of p53. Among several sites reported, we confirmed phosphorylation at Ser-15 and Ser-392 after UV-irradiation. Both of these were inhibited by a phosphoinositide 3-kinase inhibitor, presumably due to the shutdown of signals from DNA damage to p53. Phosphorylation at Ser-392 was also sensitive to an antioxidant and a p38 inhibitor, suggesting that Ser-392 of p53 is one of the possible points where DNA damage-dependent and -independent apoptic signals merge. Thus, MAPK pathway links UV-induced intracellular signals to the nuclear responses and modifies DNA damage-dependent cellular outcome, resulting in the determination of cell death.

  • PDF

Enhancing Effect of Extracts of Phellodendri Cortex on Glucose Uptake in Normal and Insulin-resistant 3T3-L1 Adipocytes (3T3-L1 지방세포에서 황백 추출물의 Glucose Uptake 촉진 및 인슐린 저항성 개선 활성)

  • Kim, So-Hui;Shin, Eun-Jung;Hyun, Chang-Kee
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.4
    • /
    • pp.291-298
    • /
    • 2005
  • Anti-hyperglycemic effects of 17 medicinal plants that have been used for ameliorating diabetes in oriental medicine were evaluated using glucose transport assay in 3T3-L1 adipocytes. Higher activities were obtained by treating water or alcohol extract of Phellodendri Cortex (PC), which showed enhancing effects both on basal and insulin-stimulated glucose uptake. The latter effect of PC was completely inhibited by wortmannin, a specific inhibitor for phosphatidyl inositol 3-kinase (PI 3-kinase), but not affected by SB203580, A specific inhibitor for p38 mitogen-activatedprotein kinase(MAPK). Genistein, an inhibitor for tyrosine kinases, abolished the PC effects completely. Treatment of vanadate, an inhibitor for tyrosine phosphatases, together with PC showed no significant synergic enhancement in glucose uptake. The results of inhibitors associated with insulin signaling pathway indicated that extracts of PC enhance glucose uptake by PI-3 kinase activation which is an upstream event for GLUT4 translocation. Antidiabetic effects of PC extract might be also due to enhanced tyrosine phosphorylation and reduced tyrosine dephosphorylation. In addition, PC accelerated insulin-stimulated glucose uptake in insulin-resistant cells, recovering the uptake level close to that of normal cells. These findings may offer a new way to utilize extracts of PC as novel anti-hyperglycemic agents.

Structure-Based Virtual Screening of Protein Tyrosine Phosphatase Inhibitors: Significance, Challenges, and Solutions

  • Reddy, Rallabandi Harikrishna;Kim, Hackyoung;Cha, Seungbin;Lee, Bongsoo;Kim, Young Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.878-895
    • /
    • 2017
  • Phosphorylation, a critical mechanism in biological systems, is estimated to be indispensable for about 30% of key biological activities, such as cell cycle progression, migration, and division. It is synergistically balanced by kinases and phosphatases, and any deviation from this balance leads to disease conditions. Pathway or biological activity-based abnormalities in phosphorylation and the type of involved phosphatase influence the outcome, and cause diverse diseases ranging from diabetes, rheumatoid arthritis, and numerous cancers. Protein tyrosine phosphatases (PTPs) are of prime importance in the process of dephosphorylation and catalyze several biological functions. Abnormal PTP activities are reported to result in several human diseases. Consequently, there is an increased demand for potential PTP inhibitory small molecules. Several strategies in structure-based drug designing techniques for potential inhibitory small molecules of PTPs have been explored along with traditional drug designing methods in order to overcome the hurdles in PTP inhibitor discovery. In this review, we discuss druggable PTPs and structure-based virtual screening efforts for successful PTP inhibitor design.

Effects of Protein Kinases on Phospholipase C Activation and Intracellular $Ca^{2+}$ Mobilization Induced by Endothelin-1 (Endothelin-1에 의한 phospholipase C 활성화와 세포내 $Ca^{2+}$ 이동에 미치는 protein kinase들의 효과)

  • 조중형;김현준;이윤혜;박진형;장용운;이승준;이준한;윤정이;김창종
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.162-168
    • /
    • 2000
  • To investigate the effects of protein kinases on endothelin-1-induced phospholipase C activation and $Ca^{2+}$ mobilization in Rat-2 fibroblast, we measured the formation of inositol phosphates and intracellular $Ca^{2+}$ concentration with [$^3$H]inositol and Fura-2/AM, respectively. Endothelin-1 dose-dependently activated phospholipase C and increased intracellular $Ca^{2+}$ concentration. Protein kinase C activator PMA, significantly inhibited both phospholipase C activity and $Ca^{2+}$ mobilization induced by endothelin-1. Tyrosine kinase inhibitor, genistein, inhibited both. On the other hand, cyclic nucleotide (cAMP and cGMP) did not have any influence on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1. These results suggest that protein kinase C and tyrosine kinase counteract on the signaling pathway of phospholipase C-Ca$^{2+}$ mobilization induced by endothelin-1 in Rat-2 fibroblast. fibroblast.

  • PDF

A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

  • Lee, Yura;Bae, Kyoung Jun;Chon, Hae Jung;Kim, Seong Hwan;Kim, Soon Ae;Kim, Jiyeon
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.389-394
    • /
    • 2016
  • Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.

Effect of Inositol-phosphatase on Fc Receptor-mediated Phagocytosis of Macrophages (대식세포의 Fc 수용체를 통한 탐식에 미치는 Inositol-phosphatase의 영향)

  • Kim, Jong-Hyun
    • IMMUNE NETWORK
    • /
    • v.5 no.3
    • /
    • pp.144-149
    • /
    • 2005
  • Background: Fc receptor-mediated phagocytosis is a complex process involving the activation of kinases and phosphatases. FcgammaRIIB has been known to transduces inhibitory signals through an immunoreceptor tyrosine-based inhibitory motif (ITIM) in cytoplasmic domains. In this study, we examined the involvement of inositol-phosphatase in the Fc receptor-mediated phagocytosis. Methods: J774 cells were infected using vaccinia viral vector containing SH2 domain-containing inositol-phosphatase (SHIP) cDNA and stimulated with the sensitized sheep red blood cells. Results: Stimulation of J774 cells induced the tyrosine phosphorylation of SHIP which was maximal at 5 minutes. Phosphatidylinositol-3 (PI-3) kinase inhibitor (wortmannin) inhibits J774 cell phagocytosis of sensitized sheep red blood cells in a dose-dependent manner. Heterologious expression of SHIP in J774 cells inhibits phagocytosis of sensitized sheep red blood cells in a dose-dependency manner, but catalytically dead mutants of SHIP has no effect on phagocytosis. Conclusion: These results strongly suggest that the active signals mediated by PI-3 kinase are opposed by inhibitory signals through SHIP in the regulation of Fc receptor-mediated phagocytosis.