• Title, Summary, Keyword: tissue microarray

Search Result 181, Processing Time 0.039 seconds

Comparison of Gene Expression Profile in Eutopic Endometria with or without Endometriosis: A Microarray Study (자궁내막증 환자와 대조군에서의 자궁내막 유전자 발현의 차이: Microarray를 이용한 연구)

  • Chung, Min-Ji;Chung, Eun-Jung;Lee, Shin-Je;Kim, Moon-Kyu;Chun, Sang-Sik;Lee, Taek-Hoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.34 no.1
    • /
    • pp.19-31
    • /
    • 2007
  • Objective: Pathogenesis of the endometriosis is very complex and the etiology is still unclear. Our hypothesis is that there may be some difference in gene expression patterns between eutopic endometriums with or without endometriosis. In this study, we analyzed the difference of gene expression profile with cDNA microarray. Methods: Endometrial tissues were gathered from patients with endometriosis or other benign gynecologic diseases. cDNA microarray technique was applied to screen the different gene expression profiles from early and late secretory phase endometria of those two groups. Each three mRNA samples isolated from early and late secretory phase of endometrial tissues of control were pooled and used as master controls and labeled with Cy3-dUTP. Then the differences of gene expression pattern were screened by comparing eutopic endometria with endometriosis, which were labeled with Cy5-dUTP. Fluorescent labeled probes were hybridized on a microarray of 4,800 human genes. Results: Twelve genes were consistently over-expressed in the endometrium of endometriosis such as ATP synthase H transporting F1 (ATP5B), eukaryotic translation elongation factor 1, isocitrate dehydrogenase 1 (NADP+), mitochondrial ribosomal protein L3, ATP synthase H+ transporting (ATP5C1) and TNF alpha factor. Eleven genes were consistently down-regulated in the endometriosis samples. Many extracellular matrix protein genes (decorin, lumican, EGF-containing fibulin-like extracellular matrix protein 1, fibulin 5, and matrix Gla protein) and protease/protease inhibitors (serine proteinase inhibitor, matrix metalloproteinase 2, tissue inhibitor of metalloproteinase 1), and insulin like growth factor II associated protein were included. Expression patterns of selected eight genes from the cDNA microarray were confirmed by quantitative RT-PCR or real time RT-PCR. Conclusion: The result of this analysis supports the hypothesis that the endometrium from patients with endometriosis has distinct gene expression profile from control endometrium without endometriosis.

Toxicogenomics approaches in Toxicological Pathology

  • Shirai, Tomoyuki
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • /
    • pp.116-116
    • /
    • 2002
  • It is believed that cell and/or tissue toxicity is resulted from alterations in expression of many genes in response to environmental stresses or toxicants. New technology, such as DNA microarray analysis, can measure the expression of thousands of genes at a time providing the potential to accelerate discovery of toxicant pathways and specific gene targets.(omitted)

  • PDF

Gene Expression Profile in the Liver Tissue of High Fat Diet-Induced Obese Mice

  • Minho Cha;Bongjoo Kang;Kim, Kyungseon;Woongseop Sim;Hyunhee Oh;Yoosik Yoon
    • Nutritional Sciences
    • /
    • v.7 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • The purpose of this study was to investigate the gene profiles that were up- or down-regulated in the livers of high-fat diet-induced obese mice and $db_-/db_-$ mice with deficient leptin receptor. C57/BL6 normal mice and $db_-/db_-$ mice, respectively, were divided into two groups and fed a standard or high-fat diet for four weeks. Liver weight was unchanged in the normal mice but the high-fat diet led to a 10% weight increase in the $db_-/db_-$mice. Adipose tissue mass increased by about 88% in the normal mice that were fed a high-fat diet and by about 17% in the $db_-/db_-$mice on the high-fat diet. In terms of serum lipids, total cholesterol significantly increased in mice on the high-fat diet. Microarray analysis was carried out using total RNA isolated from the livers of standard or high-fat diet-fed mice of the normal and $db_-/db_-$ strains. The change of gene expression was confirmed by RT-PCR. About 1.6% and 6.8% of total genes, respectively, showed different expression patterns in the normal mice fed the high-fat diet and $db_-/db_-$ mice. As a result of microarray, many genes involved in metabolism and signal pathways were shown to have different expression patterns. Expression of Mgst3 gene increased in the livers of normal and $db_-/db_-$ mice that were fed a high-fat diet. Wnt7b and Ptk9l were down-regulated in the livers of the normal mice and $db_-/db_-$ mice that were fed a high-fat diet. In conclusion, a high-fat diet induced obesity and affected gene expression involved in metabolism and signal pathway.

Microarray-Based Gene Expression Profiling to Elucidate the Effectiveness of Woowhangchongshim-won on ICH Model in Rats (Microarray 분석법 활용을 통한 뇌출혈 흰쥐에서의 우황청심원 효능 평가)

  • Kim, Hyung-Woo;Cho, Su-Jin;Kim, Bu-Yeo;Jeong, Byeong-Han;Bong, Sung-Jeon;Kim, Yong-Seong;Lee, Jang-Sik;Kwon, Jeong-Nam;Kim, Young-Kyun;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.253-260
    • /
    • 2007
  • Objectives : Intracerebral hemorrhage (ICH) is characterized by breakdown of blood vessels within the brain parenchyma. Fundamental therapeutic strategies for ICH, particularly those aimed at neuroprotection, have to be established. So in this experiment, the effects of Woowhangchongshim-won, a traditional prescription formula for treating Cerebral Apoplexy in Asian countries, were investigated. Methods : After intraperitoneal injection of chloralhydrate, rats were placed in a stereotaxic frame. ICH was induced by injection of 1 U collagenase type IV and drug was administered orally for 10 days. The molecular profile of cerebral hemorrhage in rat brain tissue was measured using micro array technique to identify up- or down- regulated genes in brain tissue. These genes induced by brain damage were mainly concerned with general metabolic process such as primary metabolic process, cellular metabolic process, macromolecule metabolic process, and biosynthetic process. Results : The number of genes increased in control and not-changed in experiment was 374, and decreased in control and not-changed in experiment was 527. We are concerned with genes that can be recovered by treatment with medicine, it is especially interesting to above types of genes. Conclusions : Upon medicine treatment to the rat having cerebral hemorrhage, expressions of some genes were restored to normal level. Further analysis using protein interaction database identified some key molecules that can be used for elucidation of therapeutical mechanism of medicine in future.

  • PDF

Microarray Analysis of Gene Expression Profiles in Response to Treatment with Melatonin in Lipopolysaccharide Activated RAW 264.7 Cells

  • Ban, Ju-Yeon;Kim, Bum-Sik;Kim, Soo-Cheol;Kim, Dong-Hwan;Chung, Joo-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • Melatonin, which is the main product of the pineal gland, has well documented antioxidant and immune-modulatory effects. Macrophages produce molecules that are known to play roles in inflammatory responses. We conducted microarray analysis to evaluate the global gene expression profiles in response to treatment with melatonin in lipopolysaccharide (LPS) activated RAW 264.7 macrophage cells. In addition, eight genes were subjected to real-time reverse transcription polymerase chain reaction (RT-PCR) to confirm the results of the microarray. The cells were treated with LPS or melatonin plus LPS for 24 hr. LPS induced the up-regulation of 1073 genes and the down-regulation of 1144 genes when compared to the control group. Melatonin pretreatment of LPS-stimulated RAW 264.7 cells resulted in the down regulation of 241 genes and up regulation of 164 genes. Interestingly, among genes related to macrophage-mediated immunity, LPS increased the expression of seven genes (Adora2b, Fcgr2b, Cish, Cxcl10, Clec4n, Il1a, and Il1b) and decreased the expression of one gene (Clec4a3). These changes in expression were attenuated by melatonin. Furthermore, the results of real-time PCR were similar to those of the microarray. Taken together, these results suggest that melatonin may have a suppressive effect on LPS-induced expression of genes involved in the regulation of immunity and defense in RAW 264.7 macrophage cells. Moreover, these results may explain beneficial effects of melatonin in the treatment of various inflammatory conditions.

DNA microarray analysis of gene expression of MC3T3-E1 osteoblast cell cultured on anodized- or machined titanium surface

  • Park, Ju-Mi;Jeon, Hye-Ran;Pang, Eun-Kyoung;Kim, Myung-Rae;Kang, Na-Ra
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.299-308
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate adhesion and gene expression of the MC3T3-E1 cells cultured on machined titanium surface (MS) and anodized titanium surface (AS) using MTT test, Scanning electron micrograph and cDNA microarray. Materials and Methods: The MTT test assay was used for examining the proliferation of MC3T3-E1 cells, osteoblast like cells from Rat calvaria, on MS and AS for 24 hours and 48 hours. Cell cultures were incubated for 24 hours to evaluate the influence of the substrate geometry on both surfaces using a Scanning Electron Micrograph (SEM). The cDNA microarray Agilent Rat 22K chip was used to monitor expressions of genes. Results: After 24 hours of adhesion, the cell density on AS was higher than MS (p < 0.05). After 48 hours the cell density on both titanium surfaces were similar (p > 0.05). AS had the irregular, rough and porous surface texture. After 48 hours incubation of the MC3T3-E1 cells, connective tissue growth factor (CTGF) was up-regulated on AS than MS (more than 2 fold) and the insulin-like growth factor 1 receptor was down-regulated (more than 2 fold) on AS than MS. Conclusion: Microarray assay at 48 hours after culturing the cells on both surfaces revealed that osteoinductive molecules appeared more prominent on AS, whereas the adhesion molecules on the biomaterial were higher on MS than AS, which will affect the phenotype of the plated cells depending on the surface morphology.

Screening of genes differentially expressed in cultured human periodontal ligament cells and human gingival fibroblasts (배양된 치주인대세포와 치은섬유아세포에서 상이하게 발현된 유전자들의 검토 양상)

  • Yoon, Hye-Jeong;Choi, Mi-Hye;Yeo, Shin-II;Park, Jin-Woo;Choi, Byung-Ju;Kim, Moon-Kyu;Kim, Jung-Chul;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.613-625
    • /
    • 2006
  • Periodontal ligament(PDL) cells and human gingival fibroblasts(HGFs) play important roles in development, regeneration, normal function, and pathologic alteration. PDL cells and HGFs have the similarity related with general characteristics of fibroblast such as spindle shaped morphology, the presence of vimentin intermediate filament and the synthesis of interstitial collagens and fibronectin. There were many studies about the differences between PDL cells and HGFs, but they were not about whole gene level. In this study, we tried to explain the differences of gene expression profiles between PDL cells and HGFs, and the differences among three individuals by screening gene expression patterns of PDL cells and HGFs, using cDNA microarray. Although there were some variants among three experiments, a set of genes were consistentely and differentially expressed in one cell type. Among 3,063 genes, 49 genes were more highly expressed in PDL cells and 12 genes were more highly expressed in HGFs. The genes related with cell structure and motility were expressed more highly in PDL cells. These are cofilin 1, proteoglycan 1 secretory granule, collagen type I(${\alpha}$ 1), adducin gamma subunit, collagen type III(${\alpha}$ 1), fibronectin, lumican(keratan sulfate proteoglycan), and ${\alpha}$ -smooth muscle actin. Tissue inhibitor of metalloproteinase known as the enzyme controlling extracellular matrix with matrix metalloproteinase is more highly expressed in PDL cells, osteoprotegerin known as osteoclastogenesis inhibitory factor is more highly expressed in HGFs. We performed northern blot to verify cDNA microarray results on selected genes such as tissue inhibitor of metalloproteinase, fibronectin, osteoprogeterin. The result of northern blot analysis showed that each cell expressed the genes in similar pattern with cDNA microarray result. This result indicates that cDNA microarray is a reliable method in screening of gene expression profiles.

Learning Graphical Models for DNA Chip Data Mining

  • Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • /
    • pp.59-60
    • /
    • 2000
  • The past few years have seen a dramatic increase in gene expression data on the basis of DNA microarrays or DNA chips. Going beyond a generic view on the genome, microarray data are able to distinguish between gene populations in different tissues of the same organism and in different states of cells belonging to the same tissue. This affords a cell-wide view of the metabolic and regulatory processes under different conditions, building an effective basis for new diagnoses and therapies of diseases. In this talk we present machine learning techniques for effective mining of DNA microarray data. A brief introduction to the research field of machine learning from the computer science and artificial intelligence point of view is followed by a review of recently-developed learning algorithms applied to the analysis of DNA chip gene expression data. Emphasis is put on graphical models, such as Bayesian networks, latent variable models, and generative topographic mapping. Finally, we report on our own results of applying these learning methods to two important problems: the identification of cell cycle-regulated genes and the discovery of cancer classes by gene expression monitoring. The data sets are provided by the competition CAMDA-2000, the Critical Assessment of Techniques for Microarray Data Mining.

  • PDF

Heterologous Microarray Hybridization Used for Differential Gene Expression Profiling in Benzo[a]pyrene-exposed Marine Medaka

  • Woo, Seon-Ock;Won, Hyo-Kyoung;Jeon, Hye-Young;Kim, Bo-Ra;Lee, Taek-Kyun;Park, Hong-Seog;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • Differential gene expression profiling was performed in the hepatic tissue of marine medaka fish (Oryzias javanicus) after exposure to benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), by heterologous hybridization using a medaka cDNA microarray. Thirty-eight differentially expressed candidate genes, of which 23 were induced and 15 repressed (P<0.01), were identified and found to be associated with cell cycle, development, endocrine/reproduction, immune, metabolism, nucleic acid/protein binding, signal transduction, or non-categorized. The presumptive physiological changes induced by BaP exposure were identified after considering the biological function of each gene candidate. The results obtained in this study will allow future studies to assess the molecular mechanisms of BaP toxicity and the development of a systems biology approach to the stress biology of organic chemicals.

Dysregulation of Cannabinoid CB1 Receptor Expression in Subcutaneous Adipocytes of Obese Individuals

  • Lee, Yong-Ho;Tharp, William G.;Dixon, Anne E.;Spaulding, Laurie;Trost, Susanne;Nair, Saraswathy;Permana, Paska A.;Pratley, Ridhard E.
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.371-379
    • /
    • 2009
  • The endocannabinoid system (ECS) plays a key role in the regulation of appetite, body weight and metabolism. We undertook the present study to further clarify the regulation of the cannabinoid CB1 receptor (CB1, CNR1) in human adipose tissue in obesity. CB1 receptor mRNA expression was ~1.6-fold (p<0.004) and 1.9-fold higher (P<0.05) in subcutaneous adipocytes from obese compared to non-obese subjects in microarray and quantitative real-time PCR studies, respectively. Higher CB1 receptor mRNA expression levels in both adipose tissue (~1.2 fold, P<0.05) and adipocytes (~2 fold, P<0.01) were observed in samples from visceral compared to subcutaneous depots collected from 22 obese individuals. Immunofluorescence confocal microscopy demonstrated the presence of CB1 receptor on adipocytes and also adipose tissue macrophages. These data indicate that adipocyte CB1 receptor is up-regulated in human obesity and visceral adipose tissue and also suggest a potential role for the ECS in modulating immune/inflammation as well as fat metabolism in adipose tissue.