• Title, Summary, Keyword: techniques: high angular resolution

Search Result 10, Processing Time 0.033 seconds

THE STUDY OF SCATTERING IN THE ISM WITH HIGH RESOLUTION OBSERVATIONS OF OH MASERS

  • Migenes, Victor;Slysh, V.I.;Velasco, A.E.Ruis;Villalpando, S.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.131-132
    • /
    • 2007
  • The research of OH maser emission sources with high angular resolution is complicated by the effects of interstellar scattering: more over, most of the OH maser sources are located in the galactic plane where the scattering is largest. However, the data available from pulsar studies on the spatial distribution of the amount of scattering indicate that there is a strong non-uniformity in the distribution of the amount of scattering material. There are directions in the galactic plane where the scattering is an order of magnitude higher than the average, as well as directions where the scattering is much lower. The latter provide an opportunity to investigate OH masers with the full angular resolution offered by very long baseline interferometry instruments, like the VLBA, and measure their true angular size, shape and brightness temperature. We have observed approximately 100 OH maser sources, distributed all over the northern hemisphere, with the VLBA in order to study the scattering properties of the interstellar medium.

HIGH ANGULAR RESOLUTION [Fe II] λ1.644 μ SPECTROSCOPY OF YSOS WITH SUBARU TELESCOPE

  • PYO TAE-SOO;HAYASHI MASAHIKO;NAOTO KOBAYASHI;TERADA HIROSHI;TOKUNAGA ALAN T.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.249-252
    • /
    • 2005
  • We present results of the velocity-resolved spectroscopy of the [Fe II] $\lambda$1.644${\mu}m$ emission toward outflow sources with the Subaru Telescope at the angular resolution of 0.apos;16 ${\~}$ 0.apos;5 arcseconds. The observed sources are L1551 IRS 5, DG Tau, HL Tau and RW Aur, which are located in the Taurus-Aurigae Molecular Cloud, one of the closest star forming regions (0.apos;1 = 14 AU). We were able to resolve outflow structure in the vicinity of the sources at a scale of a few tens of AU. The position-velocity diagram of each object shows two velocity components: the high velocity component (HVC: 200 - 400 km $s^{-l}$) and the low velocity component (LVC: 50 - 150 km $s^{-l}$), which are clearly distinct in space and velocity. The HVC may be a highly collimated jet presumed from its narrow velocity width and high velocity. The LVC, on the other hand, may be a widely opened disk wind inferred from its broad velocity width and low velocity. The spectrum taken perpendicular to the L1551 IRS 5 outflow at its base shows that the LVC has a spatially wide subcomponent, supporting the above interpretation. We demonstrated that the [Fe II] 1.644 $\mu$ spectroscopy is a very powerful tool for the studies of fast jets and winds that directly emanate from star-disk systems.

UNVEILING COMPLEX OUTFLOW STRUCTURE OF UY Aur

  • PYO, TAE-SOO;HAYASHI, MASAHIKO;BECK, TRACY;DAVIS, CHRISTOPHER J.;TAKAMI, MICHIHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.109-112
    • /
    • 2015
  • We present [$Fe\;{\small{II}}$] ${\lambda}1.257{\mu}m$ spectra toward the interacting binary UY Aur with 0".14 angular resolution, obtained with the Near infrared Integral Field Spectrograph (NIFS) combined with the adaptive optics system Altair of the GEMINI observatory. In the [$Fe\;{\small{II}}$] emission, UY Aur A (primary) is brighter than UY Aur B (secondary). The blueshifted and redshifted emission between the primary and secondary show a complicated structure. The radial velocities of the [$Fe\;{\small{II}}$] emission features are similar for UY Aur A and B: ${\sim}-100km\;s^{-1}$ and ${\sim}+130km\;s^{-1}$ for the blueshifted and redshifted components, respectively. Considering the morphologies of the [$Fe\;{\small{II}}$] emissions and bipolar outflow context, we concluded that UY Aur A drives fast and widely opening outflows with an opening angle of ${\sim}90^{\circ}$ while UY Aur B has micro collimated jets.

Event Horizon Telescope : Earth-sized mm-VLBI array to image supermassive black holes

  • Kim, Jae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.59.1-59.1
    • /
    • 2019
  • Immediate vicinity of a supermassive black hole (SMBH) is an important place to test general relativity in strong gravity regime. Also, this is a place where mass accretion and jet formation actively occurs at the centers of active galaxies. Theoretical studies predict presence of bright ring-like emission encircling an accreting SMBH with a diameter of about 5 Schwarzschild radii, and a flux depression at the center (i.e., BH shadow). Direct imaging of the BH shadow is accordingly of great importance in modern astrophysics. However, the angular sizes of the horizon-scale structures are desperately small (e.g., ~40-50 microarcseconds (uas) diameter for the nearest best candidates). This poses serious challenges to observe them directly. Event Horizon Telescope (EHT) is a global network of sensitive radio telescopes operating at 230 GHz (1.3 mm), providing ultra-high angular resolution of 20 uas by cutting-edge very long baseline interferometry techniques. With this resolution, EHT aims to directly image the nearest SMBHs; M87 and the galactic center Sgr $A{\ast}$ (~40-50 uas diameters). In Spring 2017, the EHT collaboration conducted a global campaign of EHT and multiwavelength observations of M87 and Sgr $A{\ast}$, with addition of the phased ALMA to the 1.3mm VLBI array. In this talk, I review results from past mm-VLBI and EHT observations, provide updates on the results from the 2017 campaign, and future perspectives.

  • PDF

A STUDY OF LYNDS 1251 DARK CLOUD: I. STRUCTURE AND KINEMATICS

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.2
    • /
    • pp.159-175
    • /
    • 1994
  • We have mapped the whole extent of a dark cloud Lynds 1251 in the emission of the J=1-0 transitions of $^{12}CO\;and\;^{13}CO$ using FCRAO's fifteen-beam array receiver in high angular resolution of 50'. We have derived physical parameters of L1251, discussed three different mass estimate techniques, and obtained a large range of mass, 600 to $6,000M_\bigodot$, depending on the techniques. The factor of 10 discrepancy between the virial and LTE masses is much larger than expected based on the uncertainties residing in two methods. The large virial mass may reflect the fact that L1251 is not gravitationally bound system as in the case of dark clouds in solar neighborhood. Two outflows are affecting the dynamics of cloud significantly but not enough to reshape the whole extent of the cloud. The small cloud, 'Stripe', which is apparently connected with main cloud, is not likely to be associated with L1251. The velocity gradient composed on this small cloud may be driven by other unknown sources. It is found that L1251 cloud itself is very quiescent except the two bipolar outflow regions.

  • PDF

INTERFEROMETRIC MONITORING OF GAMMA–RAY BRIGHT ACTIVE GALACTIC NUCLEI II: FREQUENCY PHASE TRANSFER

  • ALGABA, JUAN-CARLOS;ZHAO, GUANG-YAO;LEE, SANG-SUNG;BYUN, DO-YOUNG;KANG, SIN-CHEOL;KIM, DAE-WON;KIM, JAE-YOUNG;KIM, JEONG-SOOK;KIM, SOON-WOOK;KINO, MOTOKI;MIYAZAKI, ATSUSHI;PARK, JONG-HO;TRIPPE, SASCHA;WAJIMA, KIYOAKI
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.237-255
    • /
    • 2015
  • The Interferometric Monitoring of Gamma–ray Bright Active galactic nuclei (iMOGABA) program provides not only simultaneous multifrequency observations of bright gamma–ray detected active galactic nuclei (AGN), but also covers the highest Very Large Baseline Interferometry (VLBI) frequencies ever being systematically monitored, up to 129 GHz. However, observation and imaging of weak sources at the highest observed frequencies is very challenging. In the second paper in this series, we evaluate the viability of the frequency phase transfer technique to iMOGABA in order to obtain larger coherence time at the higher frequencies of this program (86 and 129 GHz) and image additional sources that were not detected using standard techniques. We find that this method is applicable to the iMOGABA program even under non–optimal weather conditions.

CORE-JET BLENDING EFFECTS IN ACTIVE GALACTIC NUCLEI UNDER THE KOREAN VLBI NETWORK VIEW AT 43 GHZ

  • Algaba, Juan-Carlos;Hodgson, Jeffrey;Kang, Sin-Cheol;Kim, Dae-Won;Kim, Jae-Young;Lee, Jee Won;Lee, Sang-Sung;Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.2
    • /
    • pp.31-40
    • /
    • 2019
  • A long standing problem in the study of Active Galactic Nuclei (AGNs) is that the observed VLBI core is in fact a blending of the actual AGN core (classically defined by the ${\tau}=1$ surface) and the upstream regions of the jet or optically thin flows. This blending may cause some biases in the observables of the core, such as its flux density, size or brightness temperature, which may lead to misleading interpretation of the derived quantities and physics. We study the effects of such blending under the view of the Korean VLBI Network (KVN) for a sample of AGNs at 43 GHz by comparing their observed properties with observations obtained using the Very Large Baseline Array (VLBA). Our results suggest that the observed core sizes are a factor ~ 11 larger than these of VLBA, which is similar to the factor expected by considering the different resolutions of the two facilities. We suggest the use of this factor to consider blending effects in KVN measurements. Other parameters, such as flux density or brightness temperature, seem to possess a more complicated dependence.

EHT data processing and BH shadow imaging techniques

  • Cho, Ilje
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2019
  • Event Horizon Telescope (EHT) aims to resolve the innermost region to the super massive black hole (SMBH) with its extremely high angular resolution (~20-25 uas) and enhanced sensitivity (down to 1-10 mJy) in concert with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm wavelength. This has a great importance as the first observational probe of the black hole shadow which has been theoretically predicted as a ring-like emission affected by the general relativistic effect under a strong gravitational field of SMBH. During the 2017 April 5-11, four nights of EHT observing campaign were carried out towards its primary targets, M87 and $SgrA{\ast}$. To robustly ensure the data processing, independent pipelines for various radio data calibration softwares (e.g., AIPS, HOPS, CASA) have been developed and cross-compared each other. The EHT has also been developing newer interferometric imaging techniques (e.g., eht-imaging-library, SMILI, dynamical imaging), as well as using an established method (CLEAN). With these, the EHT has designed various strategies which will be adopted for convincing imaging results. In this talk, I review how the robustness of EHT data processing and imaging will be validated so that the results can be ensured against well known uncertainties or biases in the interferometric data calibration and imaging.

  • PDF

MEASURING THE CORE SHIFT EFFECT IN AGN JETS WITH THE EXTENDED KOREAN VLBI NETWORK

  • JUNG, TAEHYUN;DODSON, RICHARD;HAN, SEOG-TAE;RIOJA, MARIA J.;BYUN, DO-YOUNG;HONMA, MAREKI;STEVENS, JAMIE;VICENTE, PABLO DE;SOHN, BONG WON
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • We present our efforts for extending the simultaneous multi-frequency receiver system of the Korean Very Long Baseline Interferometry (VLBI) Network (KVN) to global baselines in order to measure the frequency-dependent position shifts in Active Galactic Nuclei (AGN) jets, the so called core shift effect, with an unprecedented accuracy (a few micro-arcseconds). Millimeter VLBI observations with simultaneous multi-frequency receiver systems, like those of the KVN, enable us to explore the innermost regions of AGN and high precision astrometry. Such a system is capable of locating the frequency dependent opacity changes accurately. We have conducted the feasibility test-observations with the interested partners by implementing the KVN-compatible systems. Here we describe the science case for measuring the core shift effect in the AGN jet and report progress and future plans on extending the simultaneous multi-frequency system to global baselines.

A HIGHLY DISTURBED MOLECULAR CLOUD S287: I. CO OBSERVATIONS AND KINEMATICS

  • LEE YOUNGUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.2
    • /
    • pp.147-158
    • /
    • 1994
  • We have obtained high angular resolution maps toward a molecular cloud associated with an HII region S287 and studied mainly kinematics of the cloud. The mapped region is 1.5 square degrees of the cloud in the transitions of $^{12}CO\;and\;^{13}CO\;J=1-0$. We have obtained a large range of mass, $1.3\times10^4M_\bigodot$, to $7.2{\times}10^4M_{\bigodot}$ using three different techniques. The S287 molecular cloud shows a very disturbed feature: velocity field of the cloud is very complicated, and shows several arcs. It is likely that the southern part of cloud is being disrupted by the residing HII region S287 as well as external perturbing sources. In addition to an HII region, five bipolar outflows are also disturbing the molecular gas significantly. The large virial mass and the very disturbed morphology may reflect the fact that the cloud is not gravitationally bound system, as in the case of nearby giant molecular cloud (GMC) G216-2.5. The several arc structure and the filamentary features are possibly driven by external strong stellar winds, and these external perturbing sources may be driving the second generation of star-forming activities on the edges of the S287 molecular cloud.

  • PDF