• Title, Summary, Keyword: tannins

Search Result 213, Processing Time 0.06 seconds

Manipulation of Cassava Cultivation and Utilization to Improve Protein to Energy Biomass for Livestock Feeding in the Tropics

  • Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-472
    • /
    • 2003
  • Cassava (Manihot esculenta, Crantz), an annual tropical tuber crop, was nutritionally evaluated as a foliage for ruminants, especially dairy cattle. Cultivation of cassava biomass to produce hay is based on a first harvest of the foliage at three months after planting, followed every two months thereafter until one year. Inter-cropping of leguminous fodder as food-feed between rows of cassava, such as Leucaena leucocephala or cowpea (Vigna unculata), enriches soil fertility and provides additional fodder. Cassava hay contained 20 to 25% crude protein in the dry matter with good profile of amino acids. Feeding trials with cattle revealed high levels of DM intake (3.2% of BW) and high DM digestibility (71%). The hay contains tannin-protein complexes which could act as rumen by - pass protein for digestion in the small intestine. As cassava hay contains condensed tannins, it could have subsequent impact on changing rumen ecology particularly changing rumen microbes population. Therefore, supplementation with cassava hay at 1-2 kg/hd/d to dairy cattle could markedly reduce concentrate requirements, and increase milk yield and composition. Moreover, cassava hay supplementation in dairy cattle could increase milk thiocyanate which could possibly enhance milk quality and milk storage, especially in small holder-dairy farming. Condensed tannins contained in cassava hay have also been shown to potentially reduce gastrointestinal nematodes in ruminants and therefore could act as an anthelmintic agent. Cassava hay is therefore an excellent multi-nutrient source for animals, especially for dairy cattle during the long dry season, and has the potential to increase the productivity and profitability of sustainable livestock production systems in the tropics.

Molecular Weight, Protein Binding Affinity and Methane Mitigation of Condensed Tannins from Mangosteen-peel (Garcinia mangostana L)

  • Paengkoum, P.;Phonmun, T.;Liang, J.B.;Huang, X.D.;Tan, H.Y.;Jahromi, M.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1442-1448
    • /
    • 2015
  • The objectives of this study were to determine the molecular weight of condensed tannins (CT) extracted from mangosteen (Garcinia mangostana L) peel, its protein binding affinity and effects on fermentation parameters including total gas, methane ($CH_4$) and volatile fatty acids (VFA) production. The average molecular weight ($M_w$) of the purified CT was 2,081 Da with a protein binding affinity of 0.69 (the amount needed to bind half the maximum bovine serum albumin). In vitro gas production declined by 0.409, 0.121, and 0.311, respectively, while CH4 production decreased by 0.211, 0.353, and 0.549, respectively, with addition of 10, 20, and 30 mg CT/500 mg dry matter (DM) compared to the control (p<0.05). The effects of CT from mangosteen-peel on in vitro DM degradability (IVDMD) and in vitro N degradability was negative and linear (p<0.01). Total VFA, concentrations of acetic, propionic, butyric and isovaleric acids decreased linearly with increasing amount of CT. The aforementioned results show that protein binding affinity of CT from mangosteen-peel is lower than those reported for Leucaena forages, however, the former has stronger negative effect on IVDMD. Therefore, the use of mangosteen-peel as protein source and $CH_4$ mitigating agent in ruminant feed requires further investigations.

Colorants Characteristics and Fastness Analysis of Lotus Seedpods (Lotus seedpods의 색소 특성과 견뢰도 분석)

  • Lim, Jee-Young;Jang, Jeong-Dae
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.492-498
    • /
    • 2014
  • Lotus(Nelumbo nucifera gaertn) is intimate plant to many people that it has clean and noble characteristics despite growth in the mud. Especially Lotus seedpods, byproduct of lotus, are rich in oligometric procyanidins and could be a new source of procyanidins. Procyanidins, also known as condensed tannins, are a class of polyphenols. In other words lotus seedpod contains plenty of tannins. Commonly tannins colorants could increase adsorption and fastness properties in fabric dyeing. This study was made to investigate colorants characteristics of lotus seedpod and various colorfastness properties of dyed silk fabrics. The wavelength of maximum absorption of lotus seedpod solution appeared at 273.5 nm from UV-vis spectrophotometer. From the results of FT-IR spectra measurements, IR absorption band of lotus seedpod colorants appeared at $3415cm^{-1}$, $2900cm^{-1}$ and $1620cm^{-1}$ by tannin structure. And tannin ingredient contents was the highest at pH 9 and flavonoid at pH 11. Lotus seedpod colorants showed relatively good affinity at pH 3 on silk fabrics and optimum dyeing temperature and time for silk was for 50 min, at $80^{\circ}C$. K/s of Light fastness according to different washing method was the highest at process including ironing and ${\Delta}E$ was the lowest. All of fastness(Light rubbing laundering perspiration dry cleaning) showed excellent results over 4 or 4-5 grades.

Relationship between inclusion level of Vachellia tortilis leaf meal and behavioral activities of finishing pigs

  • Thabethe, Fortune;Khanyile, Mbongeni;Ncobela, Cyprial Ndumiso;Chimonyo, Michael
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.177-185
    • /
    • 2020
  • Objective: The study was conducted to establish a relationship between inclusion level of Vachellia tortilis (V. tortilis) leaf meal and time spent on different behavioral activities by finishing pigs. Methods: A total of forty-eight male Large White×Landrace finishing pigs with a mean (±standard deviation) body weight of 63.8±3.28 kg aged 14 wks were assigned to individual pens in a completely randomized design. Pigs were fed on diets containing 0, 30, 60, 90, 120, and 150 g/kg dry matter of V. tortilis leaf meal ad libitum with fresh water provided throughout the trial. There were eight pigs in each experimental diet. The behavior of pigs was observed for three wks twice a wk from 0600 to 1800 h using six closed circuit television cameras. Results: Increasing levels of V. tortilis leaf meal caused a linear decrease (p<0.05) in time spent eating, lying down and the number of visit to the feeder. Time spent standing and biting objects increased linearly (p<0.05) with increasing inclusion level of V. tortilis leaf meal. The was a negative linear relationship (p<0.05) between condensed tannins versus time spent eating, lying down and number of feeder visits. Condensed tannins showed a positive linear relationship (p<0.05) with time spent standing and biting objects. Neutral detergent fiber caused a linear decrease (p<0.05) in number of feeder visits, time spent eating, time spent standing. Conclusion: Inclusion level of V. tortilis leaf meal reduces time spent eating, lying down and the number of feeder visit while prolonging time spent standing and biting of objects. Condensed tannins and dietary fiber are among nutritional factors affecting behavioral activities displayed by finishing pigs.

Effects of Sorghum Tannins, a Tannin Binder (Polyvinylpyrrolidone) and Sorghum Inclusion Level on the Performance of Broiler Chicks

  • Ambula, M.K.;Oduho, G.W.;Tuitoek, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1276-1281
    • /
    • 2001
  • The feeding values of four indigenous Kenyan sorghum cultivars and the effects of polyvinylpyrrolidone (PVP) on the utilization of high tannin sorghum by broiler chicks were studied in two 3-week feeding trials. In Experiment 1, one hundred and five broiler chicks (initial average weight 97 g) were randomly assigned to each one of the seven grain-soybean meal diets. The diets consisted of maize [diet 1; no assayable tannin], white sorghum [diet 2; 0.59% catechin equivalents (CE)], cream sorghum [diet 3; 0.94% CE], light brown sorghum [diet 4; 2.71% CE] and dark brown sorghum [diet 5; 3.54% CE]. Diets 6 and 7 were included to test the possibility of overcoming the detrimental effects of sorghum tannins by adding PVP at 0.25% and 0.5% to dark brown sorghum, which resulted in dietary tannin levels of 3.46% and 3.38% CE respectively. In Experiment 2, the effects of tannin on dry matter digestibility (DMD) and nitrogen (N) retention were studied in a 3-week substitution assay in which high tannin sorghum (5% CE) was substituted for white maize at different inclusion levels. Ninety broiler chicks aged 7 days (initial average weight 102 g) were randomly assigned to each one of the six diets. The diets consisted of corn gluten meal and fishmeal as protein sources plus maize [diet 1] and high tannin sorghum at different inclusion levels [diets 2, 3, 4, 5 and 6], resulting in dietary tannin levels of 0, 1.25%, 1.66%, 2.08%, 2.5% and 3.2% CE respectively. Feed intake, feed efficiency and body weight gain were measured weekly. In Experiment 2, tannin absorption, DMD and N retention were measured on days 19, 20 and 21. The results of Experiment 1 showed that feed intake, feed efficiency and body weight gain were all affected by treatment (p<0.05). Diets 1, 2 and 3 gave similar body weight gains and all were better than diets 4 and 5 (i.e. 504, 517, 473 g, vs. 256, 267 g). Similarly, feed efficiencies were higher (p<0.05) for diets 1, 2 and 3 compared to diets 4 and 5 (0.4, 0.42, 0.39 vs. 0.21, 0.23). When 0.25% PVP was added to the dark brown sorghum (diet 6) there was no significant improvement in chick performance (p>0.05). However, addition of 0.5% PVP (diet 7) resulted in significant improvement (p<0.05) in body weight gain compared to the untreated dark brown sorghum. Overall, PVP did not completely overcome the deleterious effects of tannins. The results of Experiment 2 indicate that sorghum inclusion level and subsequent tannin level had no effect on feed intake, feed efficiency, weight gain, DMD and N retention. The above results suggest that tannin level should be limited to below 2.71% CE in broiler chick diets containing 20% CP and 0.4% methionine. However, in diets with 23% CP and 0.8% methionine tannin level of up to 3.2% will not affect performance. Consequently high tannin sorghum (5% CE) can be used to substitute for white maize by up to 100% in broiler chick diets.

Evaluation of Biological Activity on The Hydrolyzable Tannins of Katsura Tree (Cercidiphyllum japonicum) (계수나무 가수분해형 탄닌의 생리활성 평가)

  • Min, Hee-Jeong;Lee, Min-Sung;Kim, Young-Kyoon;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.250-257
    • /
    • 2017
  • Eight hydrolyzable tannin compounds, such as gallic acid (1), methyl gallate (2), kurigalin (3), 1,2,3,6-tetra-O-galloyl-${\beta}$-D-(+)-glucose (4), 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-(+)-glucose (5), 6-m-digalloyl-1,2,3,4,6-penta-O-galloyl-${\beta}$-D-(+)-glucose (6), isocorilagin (7), macabarterin (8), were isolated from the EtOAc and $H_2O$ soluble fractions of Katsura tree (Cercidiphyllum japonicum) leaves, wood and bark. Then antioxidative and anti-inflammatory activity were evaluated on the each isolated compound. The antioxidative test was DPPH radical scavenging activity and all of the isolated compounds indicated much higher antioxidative values compare to the controls, BHT and ${\alpha}$-tocopherol. In the anti-inflammatory test measuring nitric oxide (NO) inhibition activity, methyl gallate, 1,2,3,6-tetra-O-galloyl-${\beta}$-D-glucose and 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose inhibited NO production, and especially, methyl gallate showed high inhibition activity. However, the anti-inflammatory activity of the hydrolyzable tannins did not show positive effect. Based on the above results, the hydrolyzable tannins of katsura tree may be used as one of the natural biomass sources that can substitute with the synthetic antioxidant.

Extracellular Tannase from Aspergillus ochraceus: Influence of the Culture Conditions on Biofilm Formation, Enzyme Production, and Application

  • Aracri, Fernanda Mansano;Cavalcanti, Rayza Morganna Farias;Guimaraes, Luis Henrique Souza
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1749-1759
    • /
    • 2019
  • Aspergillus ochraceus biofilm, developed on an inert support, can produce tannase in Khanna medium containing 1.5% (w/v) tannic acid as the carbon source, at an initial pH of 5.0, for 72 h at 28℃. Addition of 0.1% (w/v) yeast extract increased enzyme production. The enzyme in the crude filtrate exhibited the highest activity at 30℃ and pH 6.0. At 50℃, the half-life (T50) was 60 min and it was 260 min at pH 6.0. In general, addition of detergents and surfactants did not affect tannase activity significantly. Tannase has potential applications in various biotechnological processes such as the production of propyl gallate and in the treatment of tannin-rich effluents. The content of tannins and total phenolic compounds in effluents from leather treatment was reduced by 56-83% and 47-64%, respectively, after 2 h of enzyme treatment. The content of tannins and total phenolic compounds in the sorghum flour treated for 120 h with tannase were reduced by 61% and 17%, respectively. Interestingly, the same A. ochraceus biofilm was able to produce tannase for three sequential fermentative process. In conclusion, fungal biofilm is an interesting alternative to produce high levels of tannase with biotechnological potential to be applied in different industrial sectors.

Antioxidant Activities of Mixed Grains (혼합잡곡의 항산화 활성 비교)

  • Kang, Dong Seok;Cho, Moon Gu
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.5
    • /
    • pp.635-642
    • /
    • 2016
  • The purpose of this study was to investigate the levels of antioxidant activities in some traditional and a few super food mixed rice. Amongst nine chosen samples, traditional five grains were analyzed and results revealed highest content of crude-protein ($8.05{\pm}1.11%$) and lowest crude-fat content ($1.74{\pm}0.29%$); however, the calories was found to be relatively low ($358.05{\pm}0.34kcal$) in the samples. Total polyphenols, flavonoids and tannins were extracted from nine samples with 80% methanol and biochemical activity was measured. The content of total polyphenols, flavonoids and total tannin was $206.5{\sim}452.0{\mu}g/mL$, $0.126{\sim}0.340{\mu}g/mL$, and $548.1{\sim}774.8{\mu}g/mL$, respectively. The traditional five grains showed the highest values except for DPPH radical scavenging activity. DPPH radical scavenging activity was 5 to 40.3% higher in eight samples than the traditional five grains sample. From these results, it is conjectured that a mixture of five grains, might exhibit equal or considerably higher effect as healthy diet when compared to super food. The results from this study would serve as basic data for the use of traditional mixed grains rice diet for good health.