• Title, Summary, Keyword: swimming speed

Search Result 77, Processing Time 0.046 seconds

Modelling of Swimming Ability Limits for Marine Fish

  • KIM Yong-Hae;WARDLE Clement S.
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.6
    • /
    • pp.929-935
    • /
    • 1997
  • The total energy of fish movement and the maximum burst swimming speed were estimated and formulated in accordance with body length and water temperature for several species in fisheries by empirical methods and also by using published results. Under the assumption of swimming energy reserve of a fish at the initial rest state, the swimming endurance of fish with different body lengths, swimming speeds and angular velocity was calculated using the relevant equations under similar conditions in tank experiments as well as natural conditions in field. Relative swimming energy efficiency or the transition swimming speed between red and white muscle for energy consumption was represented as a trigonometric function of swimming speed ratio. Therefore, this model does closely approach the actual swimming abilities and their limits especially in relation to the fishing gear operation and allow for the greater vitality of the wild fish in the fields.

  • PDF

Swimming Characteristics of the Black Porgy Acanthopagrus schlegeli in the Towing Cod-End of a Trawl

  • Kim Yong-Hae;Jang Chi Yeong
    • Fisheries and aquatic sciences
    • /
    • v.8 no.3
    • /
    • pp.177-181
    • /
    • 2005
  • Fishing selectivity is determined by the level of voluntary escaping behavior in accordance with decision-making based on the relationship between fish size and mesh size. This study examined movement during the swimming behavior of black porgy in a trawl's towing cod-end and analyzed the movement components such as swimming speed, angular velocity of turning, and distance to the net over time. Most of the observed fish exhibited an optomotor response, maintaining position and swimming speed without changing direction. Others exhibited erratic or 'panic' behavior with sudden changes in swimming speed and direction. The latter behavior involved very irregular and aperiodic variations in swimming speed and angular velocity, termed 'chaotic behavior.' Thus, the results of this study can be applied to a chaotic behavior model as a time series of swimming movements in the towing cod-end for the fishing selectivity.

Physiological Analysis of Freestyle and Breast Stroke Swimming in High School Boys (산소 섭취량을 통하여 관찰한 수영의 생리학적 분석)

  • Nam, Kee-Yong;Kwon, Seung-Rak;Cho, Yoon-Sik;Kim, Yoon-Sun;Kim, Dai-Sung;Kim, Young-Tai
    • The Korean journal of physiology & pharmacology
    • /
    • v.3 no.2
    • /
    • pp.1-7
    • /
    • 1969
  • Physiological analysis of swimming in 13 (age:16.3 years, freestyle swimming) and 15 (age:17.2 years, breast stroke swimming) high school boys through oxygen uptake and oxygen debt measurements were performed. The following results were obtained. 1. In freestyle swimming oxygen debt was greater and mechanical efficiency was lower in subjects with less speed. In beginner efficiency was only 1.35%, whereas, in a more skilled subject it ranged to 4.28%. The mean efficiency was 2.59%. 2. In freestyle swimming the speed-oxygen debt curve was convex to the speed axis and the curve shifted to the right the more the speed was greater. 3. Maximal oxygen uptake in breast stroke swimming was 2.51 l/min or 41.8 ml/kin/kg and was 79.3% of treadmill running. Maximal pulmonary ventilation in breast stroke swimming was 73.1 l/min and was 87% of treadmill running. Maximal ventilation equivalent was 2.89 liters. 4. In subjects with greater speed of breast stroke swimming maximal oxygen uptake and mechanical efficiency of swimming were greater. The mechanical efficiency of breast stroke swimming averaged 1.08% $(range:0.51{\sim}1.70%)$. The coefficient of correlation between speed and efficiency was r=.87.

  • PDF

Fish Tracking with a Split Beam Echo Sounder -Measurements of Swimming Speeds- (Split beam 어군탐지기에 의한 어류의 유영행동 조사연구 -유영속도의 측정-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.301-311
    • /
    • 1999
  • The investigation to evaluate the possible effects of fish behaviour on acoustic target strength was carried out during the 1997 and 1998 hydroacoustic-demersal trawl surveys in the southern waters of Korea.The swimming speed and the target strength of individual, acoustically resolved fished swimming through the sound beam were measured using the split-beam tracking method on board R/V Kaya.The results obtained can be summarized as follows:1. The alongship and athwartship angles between -3dB poionts of a hull mounted 38 kHz split beam tranducer used in these surveys was >$3.76^{\circ}\;and\;6.74^{\circ}$ respectively, and the equal energy contour obtained from the measured beam pattern showed approximately the circular pattern. 2. The swimming speed measured off the south coast of Sorido in 23 January 1997 ranged 0.10 to 0.80 m/s with the average swimming spped of 0.36 m/s, and the target strength ranged -64.8 to -31.7 dB with the average target strength of -52.7 dB. The most dominant species sampled in this survey area were Japanese scaled sardine, Sardinella zunasi and Konoshiro gizzard shad, Konosirus punctatus, respectively.3. The swimming speed measured off the east coast of Kojedo in 24 March 1997 ranged 0.10 to 1.10 m/s with the average swimming speed of 0.40 m/s, and the target strength ranged -64.8 to -51.5 dB with the average target strength of -59.2 dB. The most dominant species sampled in this survey area were Swordtip squid, Photololigo edulis, Konoshiro gizzard shad and Japanese flying squid, Toddarodes pacificus, respectively and the swimming activity of these species seems to be controlled at speeds between 0.20 and 0.60 m/s. 4. The swimming speed measured the south coast of Kojedo in 25 March 1997 ranged 0.10 to 1.40 m/s with the average swimming speed of 0.51 m/s and the target strength ranged -64.3 to -47.7 dB with the average target strength of -55.1 dB. The most dominant species sampled in this survey area were Swordtip squid, Blotchy sillage, Sillago maculata and japanese scaled sardine, respectively and the swimming activity of these species seems to be controlled at speeds between 0.20 and 0.70 m/s.5. The swimming speed measured during morning twilight in the southeastern water of Cheju Island in 11 July 1998 ranged 0.20 to 1.0 m/s with the average swimming speed of 0.53 m/s, and the target strength ranged -65.0 to -47.0 dB with the average target strength of -57.1 dB. The most dominant species sampled in this survey area were Swordtip squid, Black scraper, Thamnaconus modesutus and japanese flying squid, respectively and the tile angle ranged$ +28^{\circ}\;to\;+2^{\circ}$ with the average tilt angle of -8.1$^{\circ}$ showing the downward migration.

  • PDF

Swimming speed measurement of Pacific saury (Cololabis saira) using Acoustic Doppler Current Profiler (음향도플러유향유속계를 이용한 꽁치어군의 유영속도 측정)

  • Lee, Kyoung-Hoon;Lee, Dae-Jae;Kim, Hyung-Seok;Park, Seong-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.2
    • /
    • pp.165-172
    • /
    • 2010
  • This study was performed to estimate the swimming velocity of Pacific saury (Cololabis saira) migrated offshore Funka Bay of Hokkaido using an acoustic Doppler current profiler (OceanSurveyor, RDI, 153.6kHz) established in T/S Ushio-maru of Hokkaido University, in September 27, 2003. The ADCP's doppler shift revealed as the raw data that the maximum swimming velocity was measured 163.0cm/s, and its horizontal swimming speed and direction were $72.4{\pm}24.1\;cm/s$, $160.1^{\circ}{\pm}22.3^{\circ}$ while the surrounding current speed and direction were $19.6{\pm}8.4\;cm/s$, $328.1^{\circ}{\pm}45.3^{\circ}$. To calculate the actual swimming speed of Pacific saury in each bins, comparisons for each stratified bins must be made between the mean surrounding current velocity vectors, measured for each stratified bin, and its mean swimming velocity vectors, assumed by reference (threshold > -70dB) and 5dB margin among four beams of ADCP. As a result, the actual averaged swimming velocity was 88.6cm/s and the averaged 3-D swimming velocity was 91.3cm/s using the 3-D velocity vector, respectively.

Complex Movements of Skipjack Schools Based on Sonar Observations during Pelagic Purse Seining

  • Kim, Yong-Hae
    • Fisheries and aquatic sciences
    • /
    • v.10 no.4
    • /
    • pp.220-225
    • /
    • 2007
  • The movements of skipjack schools during purse seine operations were observed by scanning sonar in the Southwest Pacific Ocean in April 2004. Swimming speed and directional changes were analyzed in relation to heading of the purse seine during shooting, speed of the purse seiner and distance to the net. Escaped schools turned clockwise (relative to the heading of the purse seiner during shooting) significantly more frequently than captured schools, who primarily turned counter-clockwise. The swimming speed of a fish school, whether it was caught or escaped, was somewhat related to the ship's speed, but swimming speed did not differ between captured and escaped schools. The behavior of skipjack schools during purse seining consists of very complex movements with changes in swimming speed and direction in relation to the nets or purse seiner. Therefore, these responses of skipjack schools to purse seining can be useful for modeling the capture process of purse seining in relation to fishing conditions.

Simulation of the virtual mackerel behavior to the trawl gear (트롤 어구에 대한 가상 고등어의 반응 행동 시뮬레이션)

  • Lee, Gun-Ho;Lee, Chun-Woo;Kim, Young-Bong;He, Pingguo;Choe, Moo-Youl
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • This paper focuses on the mackerel's visual ability and swimming capability, and aims to describe the behavior in capture and escape process by trawl. The visual sensory systems and reaction behavior based locomotory capability were analyzed and simulated. The ability of fish to see an object depends on the light intensity and the contrast and size of the object. Swimming endurance of the fish is dependent on the swimming speed and the size of the fish. Swimming speeds of the fish are simulated 3 types of the burst speed, the prolonged speed and the sustained speed according to the time they can maintain to swim. The herding and avoiding is typical reaction of the fish to the stimuli of trawl gear in the capture process. These basic behavior patterns of the virtual mackerel to the gear are simulated. This simulation will be helpful to understand the fishing processes and make high selectivity of fishing.

Heart Rate Change of Carp Cyprinus Carpio During Swimming Activity (유영운동에 의한 잉어의 심박수변화)

  • 안영일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.24-28
    • /
    • 1995
  • Exercise physiology of fish was studied by means of Electro-cardio-gram(ECG) technique with wired electrode system. Effects of swimming activity on the heart rate change for carp Cyprinus carpio was observed and analysed under swimming speeds among 1~3 Body Length/s and swimming durations of 10 and 60 minutes in the flume tank. The heart rate increase during swimming activity was observed in higher speed and longer duration conditions. The exercise effect on the heart rate continued even after fish stopped swimming. The time for recovery after exercise was tended to be elongated with the higher exercise condition.

  • PDF

Acoustic Tracking of Fish Movements in an Artificial Reef Area Using a Split-beam Echo Sounder, Side-scan and Imaging Sonars at Suyeong Man, Busan, Korea (수영만 인공어초 해역에서 소너에 의한 어군의 유영행동 추적)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.3
    • /
    • pp.273-281
    • /
    • 2013
  • The movement patterns of fish aggregations swimming freely near artificial reefs on August 24, 2006, at Suyeong Man, Busan, Korea, were acoustically investigated and analyzed. Acoustic surveys were conducted using a 70kHz split-beam echo sounder, 330 kHz side-scan sonar and a 310 kHz imaging sonar. Algorithms for tracking the movement of fish aggregations swimming in response to artificial reefs were developed. The travel direction and the swimming speed for two aggregations of fish were estimated from the trajectory orientations of echo responses recorded by the imaging sonar.The first group was floating just above the reef structure, while remaining in the midwater column, and the second group was swimming through and around artificial reefs near the seabed. The mean swimming speed was estimated to be 0.40 m/s for the midwater fish aggregation and 0.17 m/s for the bottom aggregation close to artificial reefs. These results suggest that the swimming behavior of fish aggregations passing close to artificial reefs near the seabed displayed a slower moving pattern than fish floating just above the reef structure in the midwater column.

The Effects of Marine Training on Physical -Focused to Teaching Models of Aquatic Training Curricula- (해양훈련이 신체에 미치는 영향 - 해양훈련교과목의 수업모형을 중심으로 -)

  • KWON, Hyeg-Dong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.2
    • /
    • pp.156-162
    • /
    • 2004
  • This study aimed to know the effects of three marine training items, swimming, rowing and yachting on pulse, lung capacity and weight. The experiment subjects were composed of ten each item and were tested for six days. The experiment groups were strictly controlled in eating time, food amount, sleeping time and training intensity. The level of training intensity was 70~80% of maximal pulse rate. In the training intensity of each item the speed was decided after examination in advance, and the trainees kept the speed during training. The contents of training were made up through enough examination. The conclusions were as follows. 1. The effect on pulse in average value showed the decrease of 1.80round/min swimming, 1.51round/min rowing, and 0.11round/min yachting, but it was not admitted as significant difference. And in average value, swimming showed the decrease of 0.26round/m than rowing and 1.69round/m than yachting. 2. The effect on lung capacity showed the increase of 66.66cc swimming, 42.97cc rowing, and 4.22cc yachting, but there was no significant difference. And the average value of swimming showed the increase of 23.66cc than rowing, and 62.44cc than yachting. 3. The effect on weight showed decrease of 3.45g in swimming, 3.24g in rowing, and 2.07g in yachting. Swimming and rowing proved to have significant difference (p<.05). And in average value, swimming showed the decrease of 1.175g than rowing, and 1.38g than yachting. On the whole, in all experiment items, pulse, lung capacity and weight, the change was in the order of swimming, rowing and yachting after experiments.