• Title/Summary/Keyword: structural safety

Search Result 1,086, Processing Time 0.088 seconds

Structural Safety Analysis of a Long Span Cable-stayed Bridge with a Partially Earth Anchored Cable System on Dynamic Loads during Construction (일부타정식 케이블 시스템 장경간 사장교의 시공 중 동적 안전성 분석)

  • Won, Jeong-Hun;Kim, Gyeoung Yun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.104-110
    • /
    • 2016
  • The effect of a partially earth anchored cable system on the structural safety of a long span cable-stayed bridge under seismic and wind loads are examined during construction process. By assuming the FCM (free cantilever method) construction stages with structural vulnerability, a multi-mode spectral analysis and a multi-mode buffeting analysis are performed for specific seismic load and wind load, respectively. Results show that the wind load dominates the structural safety of a cable-stayed bridge during construction. And, the application of a partially earth anchored cable system can enhance structural safety under wind load since the maximum pylon moment in the model with partially earth anchored cable system is reduced by 49% under wind load. In contrast, the maximum pylon moment occurred by seismic load is only decreased by 8%.

Structural safety redundancy-based design method for structure with viscous dampers

  • Hao, Linfei;Zhang, Ruifu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.821-840
    • /
    • 2016
  • A simple design process is proposed for supplemental viscous dampers based on structural safety redundancy. In this process, the safety redundancy of the primary structure without a damper is assessed by the capacity and response spectra. The required damping ratio that should be provided by the supplemental dampers is estimated by taking the structural safety redundancy as a design target. The arrangement of dampers is determined according to the drift distribution obtained by performing pushover analysis. A benchmark model is used to illustrate and verify the validity of this design process. The results show that the structural safety redundancy of the structure provided by the viscous dampers increases to approximately twice that of the structure without a damper and is close to the design target. Compared with the existing design methods, the proposed process can estimate the elastic-plastic response of a structure more easily by using static calculation, and determine the required damping ratio more directly without iterative calculation or graphical process. It can be concluded that the proposed process is simple and effective.

A Case Study on the Structural Safety Evaluation of a building with Adversiting Pillar Tower (광고탑이 설치된 건축 구조물의 구조안전성 평가에 관한 사례 연구)

  • 은충기;채원규;손영현
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.147-152
    • /
    • 1998
  • In this thesis, the structural safety evaluation of a building with adversiting pillar tower were studied. From the structural analysis results of a building with adversiting pillar tower, the bending stress, the shearing stress and the axial stress were calculated, and these member forces were applied to the structural safety evaluation of a building with adversiting pillar tower.

  • PDF

Space Efficiency and Structural Safety of Eryngii Cultivation House (새송이 버섯 재배사의 공간효율 및 구조안전 검토)

  • Kwon, Jin-Keun;Suh, Won-Myung;Yoon, Yong-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.351-354
    • /
    • 2003
  • This study was carried out to set up design criteria of Eryngii cultivation houses. Optimization of lay-out efficiency together with analysis of structural safety were two main tools of approaching toward reasonable models to be developed. Some models tentatively assumed according to the result of field survey and analysis were compared in the aspect of structural safety as well as energy efficiency.

  • PDF

Structural Evaluation on the Impact of a Radioisotope Package

  • Chung, Sung-Hwan;Lee, Heung-Young;Ku, Jeong-Hoe;Seo, Ki-Seog;Han, Hyun-Soo
    • Nuclear Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.462-469
    • /
    • 1998
  • A package to transport high-level radioactive materials is required to withstand normal transport and hypothetical accident conditions pursuant to the IAEA and domestic regulations. The package should maintain the structural safety not to release radioactive material in any condition. The structural safety of the package has been evaluated by tests using proto-type or scaled-down models, however, the method by analysis is gradually utilized due to recent advancement of computers and computer codes. In this paper, to evaluate the structural safety of a radioisotope package of the KAERI, the three dimensional impact analyses under 9m free drop and 1m puncture were performed with an explicit finite-element code, the LS-DYNA3D code. The maximum stress intensity on each part was calculated and the structural safety of the package was evaluated in accordance with the regulations.

  • PDF

A Study on the Structural Safety of Photovoltaic System Mounted on Balcony Railing (발코니 거치 태양광 발전장치의 구조적 안전성에 관한 연구)

  • Jo, Jeong-Jae;Chung, Yu-Gun
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.33-38
    • /
    • 2012
  • This study aims to evaluate the structural safety of the balcony photovoltaic systems easily installed or moved on the buildings. Also, the systems are controlled by solar altitudes focused on its mobility rather than high efficiency generation performance thereof. The results of the study are as follows. Two types of typical photovoltaic systems which can be mounted on the balcony are proposed, and, the sizes of the systems are designed to be adjusted within certain ranges of the frames in order to attach the various rail sizes. To evaluate the structural safety of the proposed systems, several simulation evaluations are performed on the safety evaluation standards by the Ministry of Construction-Transportation and KCI 2007. The results are that the proposed plans are reasonable in terms of stress and deflection in the structural aspects at the wind pressures of $1,907(N/m^2)$ of external wall surface under the condition of wind velocity higher than 25(m/s).

Structural Safety Evaluation of PBD Composite Perforator's Leader for Soft Ground Improvement (연약지반 개량 PBD 복합천공기 리더의 구조 안전성 평가)

  • Kim, Min-Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.894-900
    • /
    • 2018
  • Among the soft ground improvement methods, PBD is the most common construction method because it is cheap and construction is fast. However, if the ground is rigid, additional work is required. In this study, the structural safety, natural vibration, and safety angle of the steel vertical tower structure were evaluated in the development of the PBD composite perforator which can be combined with drilling work and PBD construction. Structural safety was assessed when the wind load of 20 m/s was simultaneously applied to the PBD construction load of 20 tons, the perforating operation of 25 tons, and the wind speed of 50 m/s was applied only to the wind load. The natural frequencies were evaluated up to the sixth mode, and the safety angle was evaluated for static and dynamic safety angles.

Evaluation of Structural Safety of Cultural Property Altar due to Weathering Damage and Sectional Defection (풍화 손상 및 단면 결손에 따른 문화재 불단의 구조 안전성 평가)

  • Lee, Ga-Yoon;Lee, Sung-Min;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.23-30
    • /
    • 2018
  • The purpose of this study is to evaluate the structural safety of cultural altar since its bearing capacity has been questioned due to weathering damages and sectional defections. This evaluation process consists two stages; which the first is field investigation and the second is structural modeling and analysis. Based on field investigation, all of the structural members supporting the altar were carefully examined and all the findings were accounted for the development of the structural modeling using the Midas computer program. Using a 3D scanner, the weight of the Buddha statue was applied to the structural modeling. Then, according to the allowable stress design method of KBC2016, the structural safety was evaluated. Based on this result, replacements of several structural members were recommended to increase the structural safety and value of cultural property.

Pontoon Type Design and Structural Safety Estimation (폰툰형 플랫폼 설계 및 구조안전성 평가)

  • Seo, Kwang-Cheol;Oh, Jung-Mo;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.604-610
    • /
    • 2018
  • Recently, due to the rapid growth of the leisure industry, demand for small-scale flotation and mooring pontoon platforms has been increasing rapidly. Standard rules for the design and structural safety of such structures have become necessary. This paper provides criteria that can be referenced when designing pontoon platforms, and also introduces structural safety evaluation procedures. In this study, the structural safety and stability of a 15-meter pontoon platform were investigated through structural design and finite element analysis. For platforms of less than 10 meters in length, a simple structural calculation can be used, but for platforms over 10 meters, a detailed structural strength review must be considered to meet safety guidelines defined in existing regulations. The structural strength of the initial design was examined and its structural safety was verified. For future research, it is an evaluative system was developed that can be used to examine the various loading conditions during design.