• Title, Summary, Keyword: stereotactic radiotherapy

Search Result 123, Processing Time 0.039 seconds

Maximum standardized uptake value at pre-treatment PET in estimating lung cancer progression after stereotactic body radiotherapy

  • Park, Jisun;Choi, Yunseon;Ahn, Ki Jung;Park, Sung Kwang;Cho, Heunglae;Lee, Ji Young
    • Radiation Oncology Journal
    • /
    • v.37 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • Purpose: This study aimed to identify the feasibility of the maximum standardized uptake value (SUVmax) on baseline 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT) as a predictive factor for prognosis in early stage primary lung cancer treated with stereotactic body radiotherapy (SBRT). Materials and Methods: Twenty-seven T1-3N0M0 primary lung cancer patients treated with curative SBRT between 2010 and 2018 were retrospectively evaluated. Four patients (14.8%) treated with SBRT to address residual tumor after wedge resection and one patient (3.7%) with local recurrence after resection were included. The SUVmax at baseline PET/CT was assessed to determine its relationship with prognosis after SBRT. Patients were divided into two groups based on maximum SUVmax on pre-treatment FDG PET/CT, estimated by receiver operating characteristic curve. Results: The median follow-up period was 17.7 months (range, 2.3 to 60.0 months). The actuarial 2-year local control, progression-free survival (PFS), and overall survival were 80.4%, 66.0%, and 78.2%, respectively. With regard to failure patterns, 5 patients exhibited local failure (in-field failure, 18.5%), 1 (3.7%) experienced regional nodal relapse, and other 2 (7.4%) developed distant failure. SUVmax was significantly correlated with progression (p = 0.08, optimal cut-off point SUVmax > 5.1). PFS was significantly influenced by pretreatment SUVmax (SUVmax > 5.1 vs. SUVmax ≤ 5.1; p = 0.012) and T stage (T1 vs. T2-3; p = 0.012). Conclusion: SUVmax at pre-treatment FDG PET/CT demonstrated a predictive value for PFS after SBRT for lung cancer.

Outcomes for Pituitary Adenoma Patients Treated with Linac-Based Stereotactic Radiosurgery and Radiotherapy: a Long Term Experience in Thailand

  • Puataweepong, Putipun;Dhanachai, Mantana;Hansasuta, Ake;Dangprasert, Somjai;Sitathanee, Chomporn;Swangsilpa, Thiti;Vitoonpanich, Patamintita;Yongvithisatid, Pornpan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.13
    • /
    • pp.5279-5284
    • /
    • 2015
  • Background: The study analyzed the long term clinical outcomes of pituitary adenoma cases treated with the first Thailand installation of a dedicated Linac-based stereotactic radiation machine (X-Knife). Materials and Methods: A retrospective review of 115 consecutive pituitary adenoma patients treated with X-Knife at the Faculty of Medicine, Ramathibodi Hospital, Bangkok, Thailand from 1997 to 2003 was performed. Stereotactic radiosurgery (SRS) was selected for 21 patients (18%) including those with small tumors (${\leq}3cm$) located ${\geq}5mm$. from the optic apparatus, whereas the remaining 94 patients (82%) were treated with fractionated stereotactic radiotherapy (FSRT). Results: With a median follow-up time of 62 months (range, 21-179), the six-year progression free survival was 95% (93% for SRS and 95% for FSRT). The overall hormone normalization at 3 and 5 years was 20% and 30%, respectively, with average time required for normalization of approximately 16 months for SRS and 20 months for FSRT. The incidence of new hypopituitarism was 10% in the SRS group and 9% in the FSRT group. Four patients (5%) developed optic neuropathy (1 in the SRS group and 3 in the FSRT group). Conclusions: Linac-based SRS and FSRT achieved similar high local control rates with few complications in pituitary adenoma cases. However, further well designed, randomized comparative studies between SRS versus FSRT particularly focusing on hormone normalization rates are required.

Clinical Outcomes of Intracranial Nonvestibular Schwannomas Treated with Linac-Based Stereotactic Radiosurgery and Radiotherapy

  • Puataweepong, Putipun;Dhanachai, Mantana;Hansasuta, Ake;Saetia, Kriangsak;Dangprasert, Somjai;Sitathanee, Chomporn;Yongvithisatid, Pornpan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3271-3276
    • /
    • 2016
  • Background: Intracranial nonvestibular schwannomas arising from various cranial nerves excluding CN VIII are uncommon. Recently, stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (SRT) have been widely reported as effective treatment modalities for nonvestibular schwannomas. The purpose of this study was to study the long term clinical outcome for nonvestibular schwannomas treated with both X-Knife and CyberKnife (CK) radiosurgery at one institution. Materials and Methods: From 2004 to 2013, fifty-two nonvestibular schwannoma patients were included in this study, 33 patients (63%) were treated with CK, and 19 (37%) were treated with X-Knife. The majority of the tumors were jugular foramen schwannomas (38%) and trigeminal schwannomas (27%). HSRT was given for 45 patients (86%), whereas CSRT was for 6 (12%) and SRS for 1 (2%). Results: The median pretreatment volume was $9.4cm^3$ (range, $0.57-52cm^3$). With the median follow up time of 36 months (range, 3-135), the 3 and 5 year progression free survival was 94 % and 88%, respectively. Tumor size was decreased in 13 (25%), stable in 29 (56%), and increased in 10 (19%). Among the latter, 3 (30%) required additional treatment because of neurologic deterioration. No patient was found to develop any new cranial nerve deficit after SRS/SRT. Conclusions: These data confirmed that SRS/SRT provide high tumor control rates with low complications. Large volume tumors and cystic expansion after radiation should be carefully followed up with neurological examination and MRI, because it may frequently cause neurological deterioration requiring further surgery.

Local ablative radiotherapy for oligometastatic non-small cell lung cancer

  • Suh, Yang-Gun;Cho, Jaeho
    • Radiation Oncology Journal
    • /
    • v.37 no.3
    • /
    • pp.149-155
    • /
    • 2019
  • In metastatic non-small cell lung cancer (NSCLC), the role of radiotherapy (RT) has been limited to palliation to alleviate the symptoms. However, with the development of advanced RT techniques, recent advances in immuno-oncology therapy targeting programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) and targeted agents for epidermal growth factor receptor (EGFR) mutation or anaplastic lymphoma kinase (ALK) translocation allowed new roles of RT in these patients. Within this metastatic population, there is a subset of patients with a limited number of sites of metastatic disease, termed as oligometastasis that can achieve long-term survival from aggressive local management. There is no consensus on the definition of oligometastasis; however, most clinical trials define oligometastasis as having 3 to 5 metastatic lesions. Recent phase II randomized clinical trials have shown that ablative RT, including stereotactic ablative body radiotherapy (SABR) and hypofractionated RT, to primary and metastatic sites improved progression-free survival (PFS) and overall survival (OS) in patients with oligometastatic NSCLC. The PEMBRO-RT study, a randomized phase II study comparing SABR prior to pembrolizumab therapy and pembrolizumab therapy alone, revealed that the addition of SABR improved the overall response, PFS, and OS in patients with advanced NSCLC. The efficacy of RT in oligometastatic lung cancer has only been studied in phase II studies; therefore, large-scale phase III studies are needed to confirm the benefit of local ablative RT in patients with oligometastatic NSCLC. Local intensified RT to primary and metastatic lesions is expected to become an important treatment paradigm in the near future in patients with metastatic lung cancer.

Setup Verification in Stereotactic Radiotherapy Using Digitally Reconstructed Radiograph (DRR) (디지털화재구성사진(Digitally Reconstructed Radiograph)을 이용한 정위방사선수술 및 치료의 치료위치 확인)

  • Cho, Byung-Chul;Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.84-88
    • /
    • 1999
  • Purpose :To develop a method for verifying a treatment setup in stereotactic radiotherapy by ma- tching portal images to DRRs. Materials and Methods : Four pairs of orthogonal portal images of one patient immobilized by a thermoplastic mask frame for fractionated stereotactic radiotherapy were compared with DRRs. Portal images are obtained in AP (anteriorfposterior) and lateral directions with a target localizer box containing fiducial markers attached to a stereotactic frame. DRRs superimposed over a planned iso-center and fiducial markers are printed out on transparent films. And then, they were overlaid over onhogonal penal images by matching anatomical structures. From three different kind of objects (isgcenter, fiducial markers, anatomical structure) on DRRs and portal images, the displacement error between anatomical structure and isocenters (overall setup error), the displacement error between anatomical structure and fiducial markers (irnrnobiliBation error), and the displacement error between fiducial markers and isocenters (localization error) were measured. Results : Localization error were 1.5$\pm$0.3 mm (AP), 0.9$\pm$0.3 mm (lateral), and immobilization errors were 1.9$\pm$0.5 mm (AP), 1.9$\pm$0.4 mm (lateral). In addition, overall setup errors were 1.0$\pm$0.9 mm (AP), 1.3$\pm$0.4 mm (lateral). From these orthogonal displacement errors, maximum 3D displacement errors($\sqrt{(\DeltaAP)^{2}+(\DeltaLat)^{2}$)) were found to be 1.7$\pm$0.4 mm for localization, 2.0$\pm$0.6 mm for immobilization, and 2.3$\pm$0.7 mm for overall treatment setup. Conclusion : By comparing orthogonal portal images with DRRs, we find out that it is possible to verify treatment setup directly in stereotactic radiotherapy.

  • PDF

Stereotactic Radiotherapy by 6MV Linear Accelerator (6MV 선형가속기를 이용한 정위다방향 단일 고선량 조사)

  • Oho, Yoon-Kyeong;Kim, Mi-Hee;Gil, Hak-Jun;Yoon, Sei-Chul;Lee, Jae-Moon;Choi, Kyu-Ho;Shinn, Kyung-Sub;Bahk, Yong-Whee;Kim, Moon-Chan;Kang, Joon-Ki;Song, Jin-Un
    • Radiation Oncology Journal
    • /
    • v.6 no.2
    • /
    • pp.269-276
    • /
    • 1988
  • Eight patients with intracranial tumors or arteriovenous malformation (AVM)s which were less than 3 cm in diameter were treated by a technique of stereotactic radiotherapy during the 4months period from July 1988 through October 1988 at the Division of Radiation Therapy, Kang-Nam St. Mary's Hospital, Catholic University Medical College. The patients were diagnosed as AVMs in 3 cases, acoustic neurinoma, craniopharyngiom (recurrent), hemangioblastoma, pineocytoma, and pituitary microadenoma in each case. There are several important factors in this procedure, such as localization system, portal, field size, radiation dose, and perioperative supportive care. It is suggested that stereotactic radiotherapy may be peformed safely with a radiation dose of 12-30 Gy. So this nonivasive procedure can be used to treat unresectable intracranial tumors or AVMs. Of these, clinical symptoms had been regressed in AVMs in 2 cases at 3 months and 2 months after Stereotactic radiotherapy, one of whom was confirmed slightly regressed on the follow-up angiogram. And also craniopharyngioma and pineocytoma was minimally regressed on 3 month follow-up CT.

  • PDF

Should Adjuvant Radiotherapy Be Recommended for Pediatric Craniopharyngiomas?

  • Dadlani, Ravi;Ghosal, Nandita;Hegde, Alangar Sathya
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.1
    • /
    • pp.54-56
    • /
    • 2014
  • Intracranial tumors secondary to radiotherapy are rare. In this group gliomas are the rarest. Only 6 cases of glioblastoma multiforme (GBM) have been reported in patients undergoing radiotherapy (RT) for craniopharyngiomas of which only 4 have been in children less than 18 years of age. In recent years RT has become a mainstay of adjuvant therapy for recurrent or partially excised craniopharyngiomas. We report a child of 12 years who had previously undergone RT for a suprasellar craniopharyngioma and presented 10 years later with a GBM. This is the 5th pediatric case in literature demonstrating a GBM after RT for a craniopharyngioma. The implications of subjecting the pediatric population to RT for a benign lesion versus the outcome of gross total removal and management of RT induced tumors is discussed and the need to avail of safer alternatives such as stereotactic radiosurgery is stressed.

Fractionated Stereotactic Radiotherapy in Pediatric Diffuse Intrinsic Brain Stem Gliomas

  • Choi, Woo-Jin;Yee, Gi-Taek;Han, Seong-Rok;Yoon, Sang-Won;Lee, Dong-Joon;Whang, Choong-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.40 no.3
    • /
    • pp.154-158
    • /
    • 2006
  • Objective : We treated 10 pediatric diffuse intrinsic brain stem glioma[BSG] patients with Novalis system [linac based radiotherapy unit, Germany] and examined the efficacy of the Fractionated Stereotactic Radiotherapy[FSRT]. Methods : A retrospective review was conducted on 10 pediatric diffuse intrinsic BSG patients who were treated with FSRT between May, 2001 and August, 2004. The mean age of the patient group was 7.7 years old. Male to female ratio was 4 to 1. The mean dose of FSRT was 38.7Gy, mean fractionated dose was 2.6Gy, mean fractionation size was 16.6, and target volume was $42.78cm^3$. The mean follow up period was 14 months. Results : Four weeks after completion of FSRT, improvements on neurological status and Karnofsky performance scale[KPS] score were recorded in 9/10 (90%] patients and magnetic resonance imaging[MRI] showed decrease in target tumor volume in 8 pediatric patients. The median survival period was 13.5 months after FSRT and treatment toxicity was mild. Conclusion : It is difficult for surgeons to choose surgical treatment for diffuse intrinsic BSG due to its dangerous anatomical structures. FSRT made it possible to control the tumor volume to improve neurological symptoms with minimal complications. We expect that FSRT is a feasible treatment modality for pediatric diffuse intrinsic BSG with tolerable toxicities.

Hippocampal Sparing Whole Brain Radiotherapy and Integrated Simultaneous Boost vs Stereotactic Radiosurgery Boost: A Comparative Dosimetric Planning Study

  • Cheah, Soon Keat;Matthews, Thomas;Teh, Bin Sing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4233-4235
    • /
    • 2016
  • Background: Whole brain radiotherapy (WBRT) and stereotactic radiosurgery were frequently used to palliate patients with brain metastases. It remains controversial which modality or combination of therapy is superior especially in the setting of limited number of brain metastases. The availability of newer medical therapy that improves survival highlighted the importance of reducing long term radiation toxicity associated with WBRT. In this study, we aim to demonstrate the hippocampal sparing technique with whole brain and integrated simultaneous boost Materials and Methods: Planning data from 10 patients with 1-5 brain metastases treated with SRS were identified. Based on the contouring guideline from RTOG atlas, we identified and contoured the hippocampus with 5mm isocentric expansion to form the hippocampal avoidance structure. The plan was to deliver hippocampal sparing whole brain radiotherapy (HSWBRT) of 30 Gy in 10 fractions and simultaneous boost to metastatic lesions of 30 Gy in 10 fractions each. Results: The PTV, hippocampus and hippocampal avoidance volumes ranges between 1.00 - 39.00 cc., 2.50 - 5.30 cc and 26.47 - 36.30 cc respectively. The mean hippocampus dose for the HSWBRT and HSWBRT and SIB plans was 8.06 Gy and 12.47 respectively. The max dose of optic nerve, optic chiasm and brainstem were kept below acceptable range of 37.5 Gy. Conclusions: The findings from this dosimetric study demonstrated the feasibility and safety of treating limited brain metastases with HSWBRT and SIB. It is possible to achieve the best of both worlds by combining HSWBRT and SIB to achieve maximal local intracranial control while maintaining as low a dose as possible to the hippocampus thereby preserving memory and quality of life.