• Title, Summary, Keyword: steel plate

Search Result 2,570, Processing Time 0.066 seconds

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

A study on Development of Auto Steel-Plate Pile System Using Measurement System (계측시스템을 이용한 자동 강재 적치 관리 시스템 개발에 관한 연구)

  • Yu, Ji-Hun;Kim, Ho-Kyoung;Kim, Rea-Soo;Sin, Hun-Joo
    • Proceedings of the SAREK Conference
    • /
    • /
    • pp.424-428
    • /
    • 2008
  • On processing of the shipbuilding, Various steel plates are used as the important material in many fields including the shell plate, a structure, etc. Therefore, the proper steel plate management system like a warehousing, pile, delivery is very important. Presently Operators manage the steel plate by using the software program, but they manage many parts manually, so many problems are generated on the steel plate check, management, and operator safety. In order to solve this problem, we developed Auto Steel-Plate Piling System. Also this system automatically manages and traces the steel-plate from warehousing to delivery.

  • PDF

A Behavior Analysis of Railway Steel Plate Girder Bridge in the Applying Resilient Panel Track System (방진제도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Choi, Jung-Youl;Eom, Mac;Kang, Duk-Man;Park, Yong-Gul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6
    • /
    • pp.717-724
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements (about 59%) and stresses (about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

A Behavior Analysis of Railway Steel Plate Girder Bridge in the applying Resilient Panel Track system (방진궤도시스템 적용에 따른 강철도 무도상 판형교의 거동 분석)

  • Lee, Si-Yong;Eom, Mac;Oh, Soo-Jin;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.437-446
    • /
    • 2006
  • The major objective of this study is to investigate the effects and application of improvement for railway steel plate girder bridge by resilient panel track system. It analyzed the mechanical behaviors of steel plate girder bridge with applying resilient panel track system on the finite element analysis and laboratory test for static & dynamic characteristics. As a result, the improvement of steel plate girder bridge with resilient panel track systems are obviously effective for the static & dynamic response which is non-ballast steel plate girder bridge. The analytical and experimental study are carried out to investigate resilient panel track system decrease vertical acceleration and deflection on steel plate girder bridge for serviceability. And the resilient panel track system reduced dynamic maximum displacements(about 59%) and stresses(about 82%), the increase of dynamic safety is predicted by adopting resilient panel track system. From the dynamic test results of steel plate girder bridge, it is investigated that vertical acceleration and deflection is very low with applying resilient panel track system. The servicing steel plate girder bridge with resilient panel track system has need of the reasonable improvement measures which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

Strength degradation of reinforced concrete piers wrapped with steel plates under local corrosion

  • Gao, Shengbin;Ni, Jie;Zhang, Daxu;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.753-765
    • /
    • 2017
  • This paper aims to investigate the strength degradation of reinforced concrete piers wrapped with steel plates which corrode at the pier base by employing a three dimensional elasto-plastic finite element formulation. The prediction accuracy of the employed finite element analysis method is firstly verified by comparing the analytical results with test results. Then, a series of parametric studies is carried out to investigate the effects of steel plate's corrosion position along width direction, corrosion depth along plate thickness, corrosion range along width direction, and steel plate-concrete bonding degradation on the strength of the piers. It is observed that the strength degradation of the piers is closely related to steel plate's corrosion position, corrosion depth and corrosion range in the case of local corrosion on the webs. In contrast, when the base of flanges corrodes, the strength degradation of the piers is only related to steel plate's corrosion depth and corrosion range, and the influence of corrosion position on the strength degradation is very gentle. Furthermore, the strength of the piers decreases with the degradation of steel plate-concrete bonding behavior. Finally, the maximum strength of the piers obtained from numerical analysis corresponding to different bonding behavior is compared with theoretical results within an accepted error.

Design of Pull Box Members on the Landing Pier Using Finite Element Analysis of a Steel Plate (강재 플레이트 유한요소해석을 이용한 잔교 상부의 풀 박스 부재의 선정)

  • Kim, Sungwon;Hong, Hyemin;Han, Taek Hee;Seo, Seung Nam
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.111-118
    • /
    • 2017
  • In this study, pull box members were designed by finite element analysis of a steel plate covering a pull box to secure its safety on the landing pier dedicated to the large research survey ship. It was assumed that the maximum load is due to the 250 tonf class crane used for unloading work when the working environment in the upper part of the landing pier was considered. The safety of the pull box was evaluated by the comparison between the yield strength of the steel plate and the result of stress analysis on the steel plate due to the crane load. It was found that the stress at the plate from the crane load exceeded the yield strength of the steel(205MPa) when the upper part of the pull box was protected by a $1950{\times}1950mm$ steel plate cover. In order to compensate for this, a concrete filled steel tube(CFT) column with a diameter of 150 mm and a steel thickness of 10 mm was reinforced at the center of the plate, and the finite element analysis was carried out. However, the maximum stress at the steel plate was higher than the yield strength of the steel in some load cases so that it was tried to find appropriate thickness of the steel plate and diameter of the CFT columns. Finally, the analysis results showed that the safety of the pull box was secured when the thickness of the steel plate and the diameter of the CFT column were increased to 30mm and 180mm, respectively.

Flexural behavior of steel storage rack base-plate upright connections with concentric anchor bolts

  • Zhao, Xianzhong;Huang, Zhaoqi;Wang, Yue;Sivakumaran, Ken S.
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.357-373
    • /
    • 2019
  • Steel storage racks are slender structures whose overall behavior and the capacity depend largely on the flexural behavior of the base-plate to upright connections and on the behavior of beam-to-column connections. The base-plate upright connection assembly details, anchor bolt position in particular, associated with the high-rise steel storage racks differ from those of normal height steel storage racks. Since flexural behavior of high-rise rack base connection is hitherto unavailable, this investigation experimentally establishes the flexural behavior of base-plate upright connections of high-rise steel storage racks. This investigation used an enhanced test setup and considered nine groups of three identical tests to investigate the influence of factors such as axial load, base plate thickness, anchor bolt size, bracket length, and upright thickness. The test observations show that the base-plate assembly may significantly influence the overall behavior of such connections. A rigid plate analytical model and an elastic plate analytical model for the overall rotations stiffness of base-plate upright connections with concentric anchor bolts were constructed, and were found to give better predictions of the initial stiffness of such connections. Analytical model based parametric studies highlight and quantify the interplay of components and provide a means for efficient maximization of overall rotational stiffness of concentrically anchor bolted high-rise rack base-plate upright connections.

EFFECT OF STAINLESS STEEL PLATE POSITION ON NEUTRON MULTIPLICATION FACTOR IN SPENT FUEL STORAGE RACKS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.75-82
    • /
    • 2011
  • The neutron multiplication factor in spent fuel storage racks, in which a stainless steel plate encloses a fuel assembly, was evaluated according to the variation of distance between the fuel assembly and stainless steel plate, as well as the pitch. The stainless steel plate position with the lowest multiplication factor on each pitch consistently appeared as 6mm or 9mm away from the outmost surface of the fuel assembly. Because the stainless steel plate has a thermal neutron absorption cross section, its ability to absorb neutrons can work best only if it is installed at the position where thermal neutrons can be gathered most easily. Therefore, the stainless steel plate position should not be too close or too far away from the fuel assembly, but it should be kept a pertinent distance from the fuel assembly.

Shear strength of connections between open and closed steel-concrete composite sandwich structures

  • Kim, Woo-Bum;Choi, Byong Jeong
    • Steel and Composite Structures
    • /
    • v.11 no.2
    • /
    • pp.169-181
    • /
    • 2011
  • The behavior of connections between open sandwich slabs and double steel skin composite walls in steel plate-concrete(SC) structure is investigated by a series of experimental programs to identify the roles of components in the transfer of forces. Such connections are supposed to transfer shear by the action of friction on the interface between the steel surface and the concrete surface, as well as the shear resistance of the bottom steel plate attached to the wall. Experimental observation showed that shear transfer in slabs subjected to shear in short spans is explained by direct force transfer via diagonal struts and indirect force transfer via truss actions. Shear resistance at the interface is enhanced by the shear capacity of the shear plate as well as friction caused by the compressive force along the wall plate. Shear friction resistance along the wall plate was deduced from experimental observation. Finally, the appropriate design strength of the connection is proposed for a practical design purpose.