• Title, Summary, Keyword: smart sensor network

Search Result 469, Processing Time 0.053 seconds

A Study on Network Interface Scheme of Heterogeneous Systems for SEM's Smart Factory Preliminary Preparation (중소기업 스마트공장 사전준비를 위한 이기종 시스템에 대한 네트워크 인터페이스 방안의 연구)

  • Kim, Jaepyo;Kim, Seungcheon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.55-61
    • /
    • 2020
  • The communication issues expected for SMEs are that 1) IT systems are not easy to connect, 2) data collection and integration by heterogeneous systems are difficult, and 3) various fieldbuses and protocols make interfaces difficult. Usually, SMEs often have automation built before the introduction of smart factories. It is necessary to provide communication technology such as Sensing to meet the heterogeneous system level with the old aged sensors in the automation equipment and communication network of SMEs. We will consider how to improve the network interface before applying the latest network technology at the time of preparation using PI.

Performance Evaluation of a Smart CoAP Gateway for Remote Home Safety Services

  • Kim, Hyun-Sik;Seo, Jong-Su;Seo, Jeongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3079-3089
    • /
    • 2015
  • In this paper, a smart constrained application protocol (CoAP)-based gateway with a border router is proposed for home safety services to remotely monitor the trespass, fire, and indoor air quality. The smart CoAP gateway controls a home safety sensor node with a pyroelectric infrared motion sensor, a fire sensor, a humidity and temperature sensor, and a non-dispersive infrared CO2 sensor and gathers sensing data from them. In addition, it can convert physical sensing data into understandable information and perform packet conversion as a border router for seamless connection between a low-power wireless personal area network (6LoWPAN) and the Internet (IPv6). Implementation and laboratory test results verify the feasibility of the smart CoAP gateway which especially can provide about 97.20% data throughput.

A decentralized approach to damage localization through smart wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2009
  • This study introduces a novel approach for locating damage in a structure using wireless sensor system with local level computational capability to alleviate data traffic load on the centralized computation. Smart wireless sensor systems, capable of iterative damage-searching, mimic an optimization process in a decentralized way. The proposed algorithm tries to detect damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides a reasonably effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Since all of the damage searching process occurs within a small group of wireless sensors, no global control or data traffic to a central system is required. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.

Considering the accuracy and efficiency of the wireless sensor network Support Plan (무선 센서 네트워크에서의 정확도와 효율성을 고려한 기술 지원 방안)

  • You, Sanghyun;Choi, Jaehyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.96-98
    • /
    • 2014
  • Wireless Sensor Network(WSN) is a wireless real-time information(Acquired from the sensor nodes that have the computing power and wireless communication capabilities.) collected, and to take advantage of processing techniques. Currently it is very diverse, such as environmental monitoring, health care, security, smart home, smart grid applications is that. Thus it is required in the wireless sensor network, the algorithm for the efficient use of the limited energy capacity. Suggested by the algorithm for selecting a cluster head node for a hybrid type and clustered, by comparing the amount of energy remaining and a connection between the nodes In this paper, we aim to increase efficiency and accuracy of the wireless sensor network.

  • PDF

LEACH Protocol based WSN Protocol using Fuzzy

  • Kwon, Oh Seok;Jung, Kye-Dong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.59-64
    • /
    • 2017
  • A wireless sensor network is a network in which nodes equipped with sensors capable of collecting data from the real world are configured wirelessly. Because the sensor nodes are configured wirelessly, they have limited power such as batteries. If the battery of the sensor node is exhausted, the node is no longer usable. If more than a certain number of nodes die, the network will not function. There are many wireless sensor network protocols to improve energy efficiency, among which LEACH Protocol is a typical example. The LEACH protocol is a cluster-based protocol that divides sensor space into clusters and transmits and receives data between nodes. Therefore, depending on how the cluster is structured, the shape of the energy cow may decrease or increase. We compare the network lifetimes of the existing LEACH protocols and the three types of protocols that have been improved using fuzzy methods for cluster selection.

Design and Implementation of M2M-based Smart Factory Management Systems that controls with Smart Phone (스마트폰과 연동되는 M2M 기반 스마트 팩토리 관리시스템의 설계 및 구현)

  • Park, Byoung-Seob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.189-196
    • /
    • 2011
  • The main issues of the researches are monitoring environment such as weather or temperature variation and natural accident, and sensor gateways which have mobile device, applications for mobile health care. In this paper, we propose the SFMS(Smart Factory Management System) that can effectively monitor and manage a green smart factory area based on M2M service and smart phone with android OS platform. The proposed system is performed based on the TinyOS-based IEEE 802.15.4 protocol stack. To validate system functionality, we built sensor network environments where were equipped with four application sensors such as Temp/Hum, PIR, door, and camera sensor. We also built and tested the SFMS system to provide a novel model for event detection systems with smart phone.

Speed Optimized Implementation of HUMMINGBIRD Cryptography for Sensor Network

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.683-688
    • /
    • 2011
  • The wireless sensor network (WSN) is well known for an enabling technology for the ubiquitous environment such as real-time surveillance system, habitat monitoring, home automation and healthcare applications. However, the WSN featuring wireless communication through air, a resource constraints device and irregular network topology, is threatened by malicious nodes such as eavesdropping, forgery, illegal modification or denial of services. For this reason, security in the WSN is key factor for utilizing the sensor network into the commercial way. There is a series of symmetric cryptography proposed by laboratory or industry for a long time. Among of them, recently proposed HUMMINGBIRD algorithm, motivated by the design of the well-known Enigma machine, is much more suitable to resource constrained devices, including smart card, sensor node and RFID tags in terms of computational complexity and block size. It also provides resistance to the most common attacks such as linear and differential cryptanalysis. In this paper, we implements ultra-lightweight cryptography, HUMMINGBIRD algorithm into the resource constrained device, sensor node as a perfectly customized design of sensor node.

An Efficient Clustering Mechanism for WSN (무선 센서 네트워크를 위한 효율적인 클러스터링 기법)

  • Lee, Jinwoo;Mohammad, Baniata;Hong, Jiman
    • Smart Media Journal
    • /
    • v.6 no.4
    • /
    • pp.24-31
    • /
    • 2017
  • In wireless sensor networks, sensor nodes are deployed in a remote, harsh environment. When the power of the sensor node is consumed in such a network, the sensor nodes become useless together with the deterioration of the quality and performance of the sensor network which may save human life. Although many clustering protocols have been proposed to improve the energy consumption and extend the life of the sensor network, most of the previous studies have shown that the overhead of the cluster head is quite large. It is important to design a routing protocol that minimizes the energy consumption of each node and maximizes the network lifetime because of the power limitations of the sensor nodes and the overhead of the cluster heads. Therefore, in this paper, we propose an efficient clustering scheme that reduces the burden of cluster heads, minimizes energy consumption, and uses algorithms that maximize network lifetime. Simulation results show that the proposed clustering scheme improves the energy balance and prolongs the network life when compared with similar techniques.

A Study about Construction of WiFi Network for Efficient Data Transmission and Sensor Data Analysis in Wastewater Treatment Plant (하.폐수 처리 시설의 센서 데이터 분석 및 효율적인 데이터 전달을 위한 WiFi 망 구축에 관한 연구)

  • Kang, Yong-Sik;Jung, Soon-Ho;Kim, Jin-Tae;Shin, Jae-Kwon;Yang, Seung-Youn;Chung, Jae-Hak;Lee, Seung-Youn;Choi, Young-Kwan;Cha, Jae-Sang
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 2012
  • In this paper, the wastewater treatment plant sludge proposed TN/TP sensor data collected an efficient monitoring system in order to implement status monitoring to build WiFi networks. Also we sludge concentration and TN/TP sensor data were collected from wastewater treatment plant. It is able to be monitored sensor data through smart devices(Smart phones, smart pad, tablet PC, etc.) and pc. In addition, when certain events occur immediately be able to cope by adding features to enable efficient and rapid processing, real-time status can be checked by ensuring improved user access and convenience. We has built a WiFi network for to transfer data efficiently. It proved its effectiveness by analysis of sensor communication network. Therefore, we have verified the usefulness of the proposed technology.

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.