• Title, Summary, Keyword: signaling pathway

Search Result 1,512, Processing Time 0.045 seconds

An Ototoxic Antibiotic Gentamicin Can Increase PKA-caveolin-1 Signaling Pathway in Differentiated Vestibular Cell Line (UB/UE-1)

  • Kim, Kyu-Sung;Cho, Byung-Han;Choi, Ho-Seok;Park, Chang-Shin;Jung, Yoon-Gun;Kim, Young-Mo;Jang, Tae-Young
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.177-182
    • /
    • 2008
  • Caveolin proteins are mediators of cell death or the survival of injured cells, and they are inhibitors of various signaling pathways. The expression of caveolin-, which is involved in the protein kinase A (PKA) signaling pathway, was examined in the differentiated mouse vestibular cell line UB/UE-1 after gentamicin ototoxicity. Caveolae in the vestibular hair cell of healthy guinea pigs were observed through an electron microscope. UB/UE-1 cells were cultured at 95% $CO_2$ with 5% $O_2$ at $33^{\circ}C$ for 48 hours and at 95% $CO_2$ with 5% $O_2$ at $39^{\circ}C$ for 24 hours for differentiation. Cells were treated with 1 mM gentamicin, 0.02 mM H89 (PKA inhibitor), and then incubated for 24 hours. Caveolin-1 expression was examined by western blotting and PKA activity by a $PepTag^{(R)}$ assay. Caveolae were observed in the vestibular hair cells of healthy guinea pigs by electron microscopy. Caveolin-1 was expressed spontaneously in differentiated UB/UE-1 cells and increased after gentamicin treatment. PKA was also over-activated by gentamicin treatment. Both gentamicin-induced caveolin-1 expression and PKA over-activation were inhibited by H89. These results indicate that gentamicin-induced caveolin-1 expression is mediated by the PKA signaling pathway. We conclude that caveolae/ caveolin activity, induced via a PKA signaling pathway, may be one of the mechanisms of gentamicin-induced ototoxicity.

MiR-374b Promotes Proliferation and Inhibits Apoptosis of Human GIST Cells by Inhibiting PTEN through Activation of the PI3K/Akt Pathway

  • Long, Zi-Wen;Wu, Jiang-Hong;Hong, Cai;Wang, Ya-Nong;Zhou, Ye
    • Molecules and Cells
    • /
    • v.41 no.6
    • /
    • pp.532-544
    • /
    • 2018
  • Gastrointestinal stromal tumours (GIST) are the most common mesenchymal tumors of the gastrointestinal (GI) tract. In order to investigate a new treatment fot GIST, we hypothesized the effect of miR-374b targeting PTEN gene-mediated PI3K/Akt signal transduction pathway on proliferation and apoptosis of human gastrointestinal stromal tumor (GIST) cells. We obtained GIST tissues and adjacent normal tissues from 143 patients with GIST to measure the levels of miR-374b, PTEN, PI3K, Akt, caspase9, Bax, MMP2, MMP9, ki67, PCNA, P53 and cyclinD1. Finally, cell viability, cell cycle and apoptosis were detected. According to the KFGG analysis of DEGs, PTEN was involved in a variety of signaling pathways and miRs were associated with cancer development. The results showed that MiR-374b was highly expressed, while PTEN was downregulated in the GIST tissues. The levels of miR-374b, PI3K, AKT and PTEN were related to tumor diameter and pathological stage. Additionally, miR-374b increased the mRNA and protein levels of PI3K, Akt, MMP2, MMP9, P53 and cyclinD1, suggesting that miR-374b activates PI3K/Akt signaling pathway in GIST-T1 cells. Moreover, MiR374b promoted cell viability, migration, invasion, and cell cycle entry, and inhibited apoptosis in GIST cells. Taken together, the results indicated that miR-374b promotes viability and inhibits apoptosis of human GIST cells by targeting PTEN gene through the PI3K/Akt signaling pathway. Thus, this study provides a new potential target for GIST treatment.

Molecular characterization of a novel rice(Oryza sativa L.) MAP kinase, OsEDRl, its role in defense signaling pathway.

  • Kim, Jung-A;Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • /
    • pp.82-83
    • /
    • 2003
  • Plants have evolved differently from animals having mobile activities. Thus, plants should have developed unique defense mechanisms against biotic/abiotic stresses to which plants are differently exposed, according to seasons. Most organisms have an conserved signaling network using mitogen-activated protein kinase (MAPK) cascade(s). The phenomenon implied that they are functionally very important in all organisms. In fact, they constitute one of the major components of signaling pathways involved in regulating a wide range of cellular activities from growth and development to cell death. Recently, complete MAPK cascade was first characterized in Arabidopsis from the receptor kinase (FLS2) through fellowing MEKKI -MKK4/MKK5-MPK3/MPK6-WRKY22/MRKY29 pathway. Whereas, MAPK cascade signaling pathway in monocot plant including rice (0ryza sativa L.), the most important of all food crops and an established monocot plant research model, MAPKinase kinase kinases (MAPKKK) of rice are the first upstream component of the MAPK cascade, but MAPKKK has been first identified and characterized in our lab and designated as, OsEDRl based on its homology with the Arabidopsis EDRI. The Arabidopsis EDRl was regarded as a negative regulator of defense response and the role of rice OsEDRl was analyzed. Transcriptional regulation of OsEDRl was detected under various stresses and immunoblotting analysis is going on to detect the level of OsEDRl protein in the mutants showing unique phenotype. We also introduced the constitutively active and the dominant negative forms of the OsEDRl for characterizing biological function.

  • PDF

BMP-2-Enhanced Chondrogenesis Involves p38 MAPK-mediated Down-Regulation of Wnt-7a Pathway

  • Jin, Eun-Jung;Lee, Sun-Young;Choi, Young-Ae;Jung, Jae-Chang;Bang, Ok-Sun;Kang, Shin-Sung
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.353-359
    • /
    • 2006
  • The bone morphogenetic protein (BMP) family has been implicated in control of cartilage development. Here, we demonstrate that BMP-2 promotes chondrogenesis by activating p38 mitogen-activated protein kinase (MAPK), which in turn downregulates $Wnt-7a/{\beta}$-catenin signaling responsible for proteasomal degradation of Sox9. Exposure of mesenchymal cells to BMP-2 resulted in upregulation of Sox9 protein and a concomitant decrease in the level of ${\beta}$-catenin protein and Wnt-7a signaling. In agreement with this, the interaction of Sox9 with ${\beta}$-catenin was inhibited in the presence of BMP-2. Inhibition of the p38 MAPK pathway using a dominant negative mutant led to sustained Wnt-7a signaling and decreased Sox9 expression, with consequent inhibition of precartilage condensation and chondrogenic differentiation. Moreover, overexpression of ${\beta}$-catenin caused degradation of Sox9 via the ubiquitin/26S proteasome pathway. Our results collectively indicate that the increase in Sox9 protein resulting from downregulation of ${\beta}$-catenin/Wnt-7a signaling is mediated by p38 MAPK during BMP-2 induced chondrogenesis in chick wing bud mesenchymal cells.

Identification of WDR7 as a Novel Downstream Target of the EphA8-Odin Signaling Complex

  • Park, Eun-Jeong;Park, Soo-Chul
    • Animal cells and systems
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • Eph receptors and their ephrin ligands have been implicated in a variety of cellular processes such as cellular morphogenesis and motility. Our previous studies demonstrated that Odin, one of the Anks family proteins, functions as a scaffolding protein of the EphA8 signaling pathway leading to modulation of cell migration or axonal outgrowth. Here we show that WDR7 is associated with Odin and that it is possibly implicated in the EphA8 signaling pathway. WD40 repeats present in the COOH-terminal region of WDR7 appear to be crucial for its association with Odin, whereas the binding motif of Odin is located in between ankyrin repeats and PTB domain. Co-immunoprecipitation experiments revealed that association of WDR7 with Odin is enhanced by ephrin ligand treatment, possibly through forming large protein complexes including both EphA8 and ephrin-A5. Consistently, immunofluorescence staining experiments suggested that WDR7 constitute a component of the large protein complexes containing Odin, EphA8 and ephrin-A5. Taken together, our results suggest the WDR7-Odin complexes might be involved in the signaling pathway downstream of the EphA8 receptor.

SH2D4A regulates cell proliferation via the ERα/PLC-γ/PKC pathway

  • Li, Tingting;Li, Wei;Lu, Jingyu;Liu, Hong;Li, Yinghui;Zhao, Yanyan
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.516-522
    • /
    • 2009
  • SH2D4A, comprising a single SH2 domain, is a novel protein of the SH2 signaling protein family. We have previously demonstrated SH2D4A is expressed ubiquitously in various tissues and is located in the cytoplasm. In this study we investigated the function of SH2D4A in human embryonic kidney (HEK) 293 cells using interaction analysis, cell proliferation assays, and kinase activity detection. SH2D4A was found to directly bind to estrogen receptor $\alpha$ (ER$\alpha$), and prevent the recruitment of phospholipase C-$\gamma$ (PLC-$\gamma$) to ER$\alpha$. Moreover, we observed its inhibitory effects on estrogen-induced cell proliferation, involving the protein kinase C (PKC) signaling pathway. Together, these findings suggested that SH2D4A inhibited cell proliferation by suppression of the ER$\alpha$/PLC-$\gamma$/PKC signaling pathway. SH2D4A may be useful for the development of a new anti-cancer drug acting as an ER signaling modulator.

Connections Between Various Trigger Factors and the RIP1/RIP3 Signaling Pathway Involved in Necroptosis

  • Zhang, Yuan-Yuan;Liu, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7069-7074
    • /
    • 2013
  • Programmed cell death is a basic cellular process that is critical to maintaining tissue homeostasis. In contrast to apoptosis, necrosis was previously regarded as an unregulated and uncontrollable process. However, as research has progressed, necrosis, also known as necroptosis or programmed necrosis, is drawing increasing attention, not least becasu of its possible impications for cancer research. Necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinases 1 and 3 (RIP1 and RIP3), mixed lineage kinase domain-like (MLKL), and phosphoglycerate mutase 5 (PGAM5) and can be specifically inhibited by necrostatins. Not only does necroptosis serve as a backup cell death program when apoptosis is inhibited, but it is now recognized to play a pivotal role in regulating various physiological processes and the pathogenesis of a variety of human diseases such as ischemic brain injury, immune system disorders and cancer. The control of necroptosis by various defined trigger factors and signaling pathways now offers the opportunity to target this cellular process for therapeutic purposes. The purpose of this paper is to review current findings concerning the connections between various trigger factors and the RIP1/RIP3 signaling pathway as it relates to necroptosis.

Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease

  • Kim, Hyunho;Sung, Jinmo;Kim, Hyunsuk;Ryu, Hyunjin;Park, Hayne Cho;Oh, Yun Kyu;Lee, Hyun-Seob;Oh, Kook-Hwan;Ahn, Curie
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.463-468
    • /
    • 2019
  • Autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT). Three hTERT-immortalized RC cell lines were characterized as proximal epithelial cells with germline and somatic PKD1 mutations. Thus, we first established hTERT-immortalized proximal cyst cells with somatic PKD1 mutations. Through transcriptome sequencing and Gene Ontology (GO) analysis, we found that upregulated genes were related to cell division and that downregulated genes were related to cell differentiation. We wondered whether the upregulated gene for the chemokine CXCL12 is related to the mTOR signaling pathway in cyst growth in ADPKD. CXCL12 mRNA expression and secretion were increased in RC cell lines. We then examined CXCL12 levels in RC fluids from patients with ADPKD and found increased CXCL12 levels. The CXCL12 receptor CXC chemokine receptor 4 (CXCR4) was upregulated, and the mTOR signaling pathway, which is downstream of the CXCL12/CXCR4 axis, was activated in ADPKD kidney tissue. To confirm activation of the mTOR signaling pathway by CXCL12 via CXCR4, we treated the RC cell lines with recombinant CXCL12 and the CXCR4 antagonist AMD3100; CXCL12 induced the mTOR signaling pathway, but the CXCR4 antagonist AMD3100 blocked the mTOR signaling pathway. Taken together, these results suggest that enhanced CXCL12 in RC fluids activates the mTOR signaling pathway via CXCR4 in ADPKD cyst growth.

Effect of Submerged Culture of Ceriporia lacerata Mycelium on Insulin Signaling Pathway in 3T3-L1 Cell (Ceriporia lacerata 균사체 배양물이 3T3-L1 세포에서 인슐린 신호 전달에 미치는 영향)

  • Shin, Eun Ji;Kim, Ji-Eun;Kim, Ji-Hye;Park, Yong Man;Yoon, Sung Kyoon;Jang, Byeong-Churl;Lee, Sam-Pin;Kim, Byoung-Cheon
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.325-330
    • /
    • 2016
  • In this study, we evaluated the antidiabetic effect of submerged culture of Ceriporia lacerata mycelium (CL01) on glucose uptake and the expression of mRNA and protein of major signal markers of insulin signaling pathway in 3T3-L1 adipocytes. After 3T3-L1 adipocytes were pre-treated by CL01 (0, 2, 10 mg/ml) for 8 hours, followed with treatment of insulin, the glucose uptake levels significantly increased by more 55.1%, 94.4% than negative control respectively (p<0.01, 0.001) in a dose-dependent manner. However, in case of CL01 pre-treatment without insulin, the glucose uptake did not increase compared with insulin-treated 3T3-L1. Also we demonstrated that the protein expression levels of pIR β, pAkt, pPI3K and pAMPK and the mRNA expression levels of GLUT4 in adipocytes inducing insulin resistance increased in CL01-treated group compared with negative control. These results demonstrated that CL01 affected glucose metabolism and the protein and gene expression through insulin signaling pathway, and increased glucose uptake levels effectively. More than 90% of those who have suffered for type 2 diabetes are more likely to have from hyperinsulinemia, hypertension, obesity and etc. because of altered insulin signaling pathway. So, it is probably considered that intake of CL01 may treat type 2 diabetes by normalization of insulin signaling pathway, and it will provide useful evidences regarding a mechanism for cure of type 2 diabetes.

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • v.28 no.4
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.