• Title, Summary, Keyword: signal measurement

Search Result 2,930, Processing Time 0.052 seconds

Signal Measurement Algorithm for 3GPP WCDMA Measurement Equipment (3GPP WCDMA모뎀 계측장비를 위한 신호계측 알고리듬)

  • Hong, Dae-Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.7-15
    • /
    • 2011
  • In this paper, we implement measurement functionality for the 3GPP (Third Generation Partnership Project) WCDMA (Wideband Code Division Multiple Access) modem. Generally speaking, the receiving algorithms in normal modems cannot be used directly to the measurement system due to the lack of the measurement accuracy. In this paper, we propose the new measurement algorithm for precise 3GPP WCDMA signal measurements. In the measurement algorithm, 4-stage parameters estimation scheme is used. To improve the measurement accuracy, we increase the number of the received signal samples by interpolation. The proposed 3GPP WCDMA signal measurement algorithm can be used for verifying and implementing SoC/FPGA modem measurement systems.

A Practical Measurement Method of the Occupied Bandwidth for 8-VSB DTV Signal Using Modified ACPR

  • Kim, Young Soo;Lee, Bong Gyou;Song, Kyeongmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3550-3565
    • /
    • 2019
  • This paper proposes a new measurement method for the effective measurement of the 99% occupied bandwidth (OBW) at monitoring stations. Although the OBW measurement of radio signal is recommended by the International Telecommunication Union Radio (ITU-R) with several methods, there still does not exist a clear measurement recommendation or standard for terrestrial DTV signal on-air environment. Modified adjacent channel power ratio (MACPR), which can be applied to 8-VSB (Vestigial Side Band) DTV (Digital Television) signal, is herein defined to verify the results of measurements obtained using the proposed measurement method. MACPR is a proper measuring parameter for determining the measuring area of a monitoring station. From measurement results obtained in real field environment, it has been found that the OBW of 8-VSB DTV signal can be effectively measured in areas where the MACPR value is over 35 dB and when the measurements are repeated more than 600 times in the same reception site. It also has been verified that measured results are within an error range of +/-0.1% compared to results directly obtained at a transmission station. It is expected that the proposed method is able to be employed in order to determine the proper location of monitoring station and provide a reliable OBW measurement procedure for 8-VSB DTV signal on-air environment.

Downlink Signal Measurement Algorithm for WCDMA/HSPA/HSPA+

  • Kwon, Bit-Na;Lee, Eui-Hak;Hong, Dae-Ki;Kang, Sung-Jin;Kang, Min-Goo;Song, Hyoung-Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3040-3053
    • /
    • 2015
  • Wideband code division multiple access (WCDMA), high speed packet access (HSPA) and HSPA+ are third generation partnership project (3GPP) standards. These systems are the major wireless communication standards. In order to test the performance of WCDMA/HSPA/HSPA+ signal in a base station, the measurement hardware is required to the evaluation of the transmitted signals. In this paper, the algorithm for the performance measurement of the WCDMA/HSPA/HSPA+ is proposed. Also, the performance of the measurement algorithm is used to evaluate the generated signal by the WCDMA/HSPA/HSPA+ signal generator. Generally, the algorithm of normal modems cannot be applied to the measurement system because the signal measurement equipment needs to guarantee the high accuracy. So, the WCDMA/HSPA/HSPA+ signal measurement algorithm for the accurate measurement is proposed. By the simulation, it is confirmed that the proposed measurement algorithm has good performance compared with the specification. Therefore, the proposed algorithm can be usefully applied to verify the performance of the measurement using the simulation.

A Signal Quality Measurement Algorithm for CDMA2000 1x Reverse-link (CDMA2000 1x 역방향 링크의 신호 품질 측정 알고리즘)

  • Kang, Sung-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.997-1004
    • /
    • 2012
  • In this paper, we propose and implement a signal quality measurement algorithm for CDMA2000 1x terminal. The proposed algorithm is suitable to be implemented in software on a PC-based platform and extract the received signal after carrying out equalization, PN code acquisition and tracking, frequency and phase offset compensation with 4-oversampled input signal. Then, through despreading and demodulation with the extracted signal, the proposed algorithm regenerate the reference signal to be used in measurement. The signal quality is measured using this regenerated signal and the extracted signal.

Adaptive Selective Compressive Sensing based Signal Acquisition Oriented toward Strong Signal Noise Scene

  • Wen, Fangqing;Zhang, Gong;Ben, De
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3559-3571
    • /
    • 2015
  • This paper addresses the problem of signal acquisition with a sparse representation in a given orthonormal basis using fewer noisy measurements. The authors formulate the problem statement for randomly measuring with strong signal noise. The impact of white Gaussian signals noise on the recovery performance is analyzed to provide a theoretical basis for the reasonable design of the measurement matrix. With the idea that the measurement matrix can be adapted for noise suppression in the adaptive CS system, an adapted selective compressive sensing (ASCS) scheme is proposed whose measurement matrix can be updated according to the noise information fed back by the processing center. In terms of objective recovery quality, failure rate and mean-square error (MSE), a comparison is made with some nonadaptive methods and existing CS measurement approaches. Extensive numerical experiments show that the proposed scheme has better noise suppression performance and improves the support recovery of sparse signal. The proposed scheme should have a great potential and bright prospect of broadband signals such as biological signal measurement and radar signal detection.

Controller for Signal Format Using the Infra-Ray Remote Control (적외선 리모콘을 이용한 신호 수신기억형 제어장치)

  • Park, Han-Suk;Jung, Hae-Gun;Bae, Jong-Il;Lee, Hyung-Gi;Ahn, Young-Joo;Byun, Gi-Sik;Kim, Nam-Ho
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2561-2563
    • /
    • 2001
  • This research is about the remote control of the infra-ray signal producer and the received signal memory-type control unit. Also by using the infra-ray signal from the remote control, reduction of malfunctions due to infra-ray signal from other devices are presented. Applications on various electric and electronic items to improve the convenience are also shown.

  • PDF

HSPA/HSPA+ Terminal Signal Measurement Algorithm and Software (HSPA/HSPA+ 단말 신호 측정 알고리즘 및 소프트웨어)

  • Cho, Tae-Kyung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.37-44
    • /
    • 2011
  • HSPA(High Speed Packet Access)/HSPA+ is a combined 3GPP(Third Generation Partnership Project) standard of HSDPA(High Speed Downlink Packet Access) and HSUPA(High Speed Uplink Packet Access). The standard can provide the high speed multimedia service against the 3GPP release 99 standard. In order to test the 3GPP HSPA/HSPA+ terminal performance, the measurement hardware is required for the evaluate the transmitted signal of HSPA/HSPA+ terminals. Agilent Technologies and Innowireless produce the measurement equipments for HSPA/HSPA+ terminals. Generally speaking, the receiving algorithms in normal modems cannot be used directly to the measurement system due to the lack of the algorithm accuracy. In this paper, we propose the new receiver algorithm for precise measurement of 3GPP HSPA/HSPA+ terminal signal, and implement measurement functionality for performance measurement of the 3GPP HSPA/HSPA+ terminal by using software. The proposed 3GPP HSPA/HSPA+ signal measurement algorithm can be used for the commercial system through code execution speed optimization.

Dynamic Synchronous Phasor Measurement Algorithm Based on Compressed Sensing

  • Yu, Huanan;Li, Yongxin;Du, Yao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.53-76
    • /
    • 2020
  • The synchronous phasor measurement algorithm is the core content of the phasor measurement unit. This manuscript proposes a dynamic synchronous phasor measurement algorithm based on compressed sensing theory. First, a dynamic signal model based on the Taylor series was established. The dynamic power signal was preprocessed using a least mean square error adaptive filter to eliminate interference from noise and harmonic components. A Chirplet overcomplete dictionary was then designed to realize a sparse representation. A reduction of the signal dimension was next achieved using a Gaussian observation matrix. Finally, the improved orthogonal matching pursuit algorithm was used to realize the sparse decomposition of the signal to be detected, the amplitude and phase of the original power signal were estimated according to the best matching atomic parameters, and the total vector error index was used for an error evaluation. Chroma 61511 was used for the output of various signals, the simulation results of which show that the proposed algorithm cannot only effectively filter out interference signals, it also achieves a better dynamic response performance and stability compared with a traditional DFT algorithm and the improved DFT synchronous phasor measurement algorithm, and the phasor measurement accuracy of the signal is greatly improved. In practical applications, the hardware costs of the system can be further reduced.

Signal Analysis According to the Position of the ECG Sensor Electrode in Healthcare Backpack (헬스케어 가방의 ECG 센서 전극 위치에 따른 신호 분석)

  • Lee, Hyeon-Seok;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.402-408
    • /
    • 2014
  • Heart rate is one of the most important signal to monitor the health condition of the patient or exerciser. Various wearable devices have been developed for the continuous monitoring of ECG signal from human body during exercise. Among these, ECG chest belt has been widely used. However wearing chest belt with ECG sensor is uncomfortable in normal life due to the electrode contact between metal electrodes of ECG sensor and skin of the human body. So we develop the royal healthcare backpack that can measure ECG signal without skin contact by using capacitor-type ECG sensor. The position of the measurement point is critical to collect a clear ECG signal in the capacitive ECG measurement from backpack. Various tests were conducted to find the optimal ECG measurement position which has less noise and could get strong and clear ECG signal during exercise, walking, hiking, mountain climbing and cycling.

Absolute Temperature Measurement using White Light Interferometry

  • Kim, Jeong-Gon
    • Journal of the Optical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.89-93
    • /
    • 2000
  • Recently a new signal processing algorithm for white light interferometry was presented. In this paper, the proposed signal processing algorithm was applied for absolute temperature measurement using white light interferometry. Stability testing and absolute temperature measurement were demonstrated. Stability test demonstrated the feasibility of absolute temperature measurement with an accuracy of 0.015 fringe. The test also showed that the absolute temperature measurement system using white light interferometry is capable of obtaining the theoretical minimum detectable change (0.0005 fringe), which is consistent with the performance predicted by the proposed signal processing algorithm.