• Title, Summary, Keyword: siRNA

Search Result 534, Processing Time 0.053 seconds

Small Interfering RNA-Mediated Suppression of Fas Modulate Apoptosis and Proliferation in Rat Intervertebral Disc Cells

  • Park, Jong-Beom;Park, Chanjoo
    • Asian Spine Journal
    • /
    • v.11 no.5
    • /
    • pp.686-693
    • /
    • 2017
  • Study Design: In vitro cell culture model. Purpose: To investigate the effect of small interfering RNA (siRNA) on Fas expression, apoptosis, and proliferation in serum-deprived rat disc cells. Overview of Literature: Synthetic siRNA can trigger an RNA interference (RNAi) response in mammalian cells and precipitate the inhibition of specific gene expression. However, the potential utility of siRNA technology in downregulation of specific genes associated with disc cell apoptosis remains unclear. Methods: Rat disc cells were isolated and cultured in the presence of either 10% fetal bovine serum (FBS) (normal control) or 0% FBS (serum deprivation to induce apoptosis) for 48 hours. Fas expression, apoptosis, and proliferation were determined. Additionally, siRNA oligonucleotides against Fas (Fas siRNA) were transfected into rat disc cells to suppress Fas expression. Changes in Fas expression were assessed by reverse transcription-polymerase chain reaction and semiquantitatively analyzed using densitometry. The effect of Fas siRNA on apoptosis and proliferation of rat disc cells were also determined. Negative siRNA and transfection agent alone (Mock) were used as controls. Results: Serum deprivation increased apoptosis by 40.3% (p<0.001), decreased proliferation by 45.3% (p<0.001), and upregulated Fas expression. Additionally, Fas siRNA suppressed Fas expression in serum-deprived cultures, with 68.5% reduction at the mRNA level compared to the control cultures (p<0.001). Finally, Fas siRNA-mediated suppression of Fas expression significantly inhibited apoptosis by 9.3% and increased proliferation by 21% in serum-deprived cultures (p<0.05 for both). Conclusions: The observed dual positive effect of Fas siRNA might be a powerful therapeutic approach for disc degeneration by suppression of harmful gene expression.

Validation of Stem-loop RT-qPCR Method on the Pharmacokinetic Analysis of siRNA Therapeutics (Stem-loop RT-qPCR 분석법을 이용한 siRNA 치료제의 생체시료 분석법 검증 및 약물 동태학적 분석)

  • Kim, Hye Jeong;Kim, Taek Min;Kim, Hong Joong;Jung, Hun Soon;Lee, Seung Ho
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.653-661
    • /
    • 2019
  • The first small interfering RNA (siRNA) therapeutics have recently been approved by the Food and Drug Administration in the U.S., and the demand for a new RNA therapeutics bioanalysis method-which is essential for pharmacokinetics, including the absorption, distribution, metabolism, and excretion of siRNA therapeutics-is rapidly increasing. The stem-loop real-time qPCR (RT-qPCR) assay is a useful molecular technique for the identification and quantification of small RNA (e.g., micro RNA and siRNA) and can be applied for the bioanalysis of siRNA therapeutics. When the anti-HPV E6/E7 siRNA therapeutic was used in preclinical trials, the established stem-loop RT-qPCR assay was validated. The limit of detection was sensitive up to 10 fM and the lower limit of quantification up to 100 fM. In fact, the reliability of the established test method was further validated in three intra assays. Here, the correlation coefficient of $R^2$>0.99, the slope of -3.10 ~ -3.40, and the recovery rate within ${\pm}20%$ of the siRNA standard curve confirm its excellent robustness. Finally, the circulation profiles of siRNAs were demonstrated in rat serum, and the pharmacokinetic properties of the anti-HPV E6/E7 siRNA therapeutic were characterized using a stem-loop RT-qPCR assay. Therefore, the stemloop RT-qPCR assay enables accurate, precise, and sensitive siRNA duplex quantification and is suitable for the quantification of small RNA therapeutics using small volumes of biological samples.

siRNA-mediated gene silencing of MexB from the MexA-MexB-OprM efflux pump in Pseudomonas aeruginosa

  • Gong, Feng-Yun;Zhang, Ding-Yu;Zhang, Jiang-Guo;Wang, Li-Li;Zhan, Wei-Li;Qi, Jun-Ying;Song, Jian-Xin
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • To gain insights into the effect of MexB gene under the short interfering RNA (siRNA), we synthesized 21 bp siRNA duplexes against the MexB gene. RT-PCR was performed to determine whether the siRNA inhibited the expression of MexB mRNA. Changes in antibiotic susceptibility in response to siRNA were measured by the E-test method. The efficacy of siRNAs was determined in a murine model of chronic P. aeruginosa lung infection. MexB-siRNAs inhibited both mRNA expression and the activity of P. aeruginosa in vitro. In vivo, siRNA was effective in reducing the bacterial load in the model of chronic lung infection and the P. aeruginosa-induced pathological changes. MexB-siRNA treatment enhanced the production of inflammatory cytokines in the early infection stage (P < 0.05). Our results suggest that targeting of MexB with siRNA appears to be a novel strategy for treating P. aeruginosa infections.

Nanoscale polyelectrolyte complexes encapsulating mRNA and long-chained siRNA for combinatorial cancer gene therapy

  • Kim, Myung Goo;Jo, Sung Duk;Jeong, Ji Hoon;Kim, Sun Hwa
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.64
    • /
    • pp.430-437
    • /
    • 2018
  • To precisely regulate target genes that are abnormally expressed in cancers, we suggest an RNA-mediated multigene targeting system that co-encapsulates siRNA against vascular endothelial growth factor (VEGF) and mRNA encoding phosphatase and tensin homolog (PTEN). Polymerized long-chain siRNAs (L-siRNAs) formed stable and condensed nanocomplexes with mRNAs using thiolated glycol chitosans (tGCs) as gene carriers. The mRNA/L-siRNA/tGC nanocomplexes (MSNs) exhibited efficient intracellular delivery and superior anti-tumor efficiency with simultaneous up and down-regulation of PTEN and VEGF, respectively. The MSN system can be considered as a new platform for cancer gene therapy requiring accurate control of multiple gene expressions.

Inhibition of Cervical Cancer Cell Growth by Gene Silencing of HPV16 E6 Induced by Short-interfering RNA

  • Park, Sang-Muk;Lee, Sun-Kyung;Kim, Yoon-Sik
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.43 no.3
    • /
    • pp.89-97
    • /
    • 2011
  • The Human Papilloma Virus (HPV) infection has been strongly associated with pathogenesis of uterine cervix carcinoma. HPV type 16, a causative agent of uterine cervix carcinoma, encodes the E6 and E7 oncogenes, expression of which is pivotal for malignant transformation and maintenance of malignant phenotypes. To develop a gene therapy for HPV-related carcinoma, We investigated the effect of E6 short-interfering RNA (E6 siRNA) on the expression of this oncogene and on the growth of HPV 16-related uterine cervix carcinoma cells. SiHa cells, a uterine cervix carcinoma cell line, which contain a single copy of HPV 16 integrated in the chromosome and express the E6 and E7 oncogenes. Before 24 hr of transfection, cells were seeded and transfected with control plasmid or E6 siRNA-expressing plasmid. The mRNA was analysed by reverse transcriptase polymerase chain reaction (RT-PCR). The cell growth rate was investigated by MTT method. The E6 mRNA level in SiHa cells was decreased in HPV 16 E6 siRNA-expression vector transfected cells and a decrease in the growth of these cells was also observed. From these results. it is evident that E6 siRNA played a role in suppression of growth of SiHa cells and has a fair chance as a candidate for gene specific therapy for HPV related uterine cervix carcinoma.

  • PDF

Inhibition of Hepatitis B Virus Replication by in vitro Synthesized RNA

  • Yang, Yeon-Ju;Heo, Young-Shin;Kim, Jeong-Ki;Kim, Sang-Yong;Ahn, Jeong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1385-1389
    • /
    • 2005
  • Human hepatitis B virus (HBV) is a pathogen related to the development of liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, the efficient methods to suppress HBV replication have not been developed yet. Therefore, we have used RNA interference (RNAi) as a potential tool for the suppression of HBV replication. Here, we designed a 21 nt small intefering dsRNA (siRNA) against hepatitis B virus X (HBx) RNA with 3' overhanging ends derived from T7 promoter. It has been reported that HBV X protein plays an important role in HBV gene expression and viral replication. The suppression of HBx gene expression by the 21 nt siRNA was investigated by Northern blot analysis and chloramphenicol acetyl transferase (CAT) assay. The level of HBx mRNA was decreased by siRNA in a dose-dependent manner. We also found that the 21 nt siRNA inhibited the HBV replication in hepatocellular carcinoma cell.

siRNA-mediated Silencing of Survivin Inhibits Proliferation and Enhances Etoposide Chemosensitivity in Acute Myeloid Leukemia Cells

  • Karami, Hadi;Baradaran, Behzad;Esfahani, Ali;Estiar, Mehrdad Asghari;Naghavi-Behzad, Mohammad;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7719-7724
    • /
    • 2013
  • Background: Overexpression of survivin, a known inhibitor of apoptosis, is associated with tumor progression and drug resistance in numerous malignancies, including leukemias. The aim of this study was to investigate the effect of a specific survivin small interference RNA (siRNA) on proliferation and the sensitivity of HL-60 acute myeloid leukemia (AML) cells to the chemotherapeutic drug etoposide. Materials and Methods: The cells were transfected with siRNAs using Lipofectamine $^{TM}2000$ transfection reagent. Relative survivin mRNA and protein levels were measured by quantitative real-time PCR and Western blotting, respectively. Trypan blue exclusion assays were performed to monitor tumor cell proliferation after siRNA transfection. The cytotoxic effects of etoposide and survivin siRNA, alone and in combination, on leukemic cells were determined using MTT assay. Apoptosis was assessed by ELISA cell death assay. Results: Survivin siRNA markedly reduced both mRNA and protein expression levels in a time-dependent manner, leading to distinct inhibition of cell proliferation and increased spontaneous apoptosis. Surprisingly, survivin siRNA synergistically increased the cell toxic effects of etoposide. Moreover, survivin down-regulation significantly enhanced its induction of apoptosis. Conclusions: Our study suggests that down-regulation of survivin by siRNA can trigger apoptosis and overcome drug resistance of leukemia cells. Therefore, survivin siRNA may be an effective adjuvant in AML chemotherapy.

Down-Regulation of Mcl-1 by Small Interference RNA Induces Apoptosis and Sensitizes HL-60 Leukemia Cells to Etoposide

  • Karami, Hadi;Baradaran, Behzad;Esfehani, Ali;Sakhinia, Masoud;Sakhinia, Ebrahim
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.629-635
    • /
    • 2014
  • Background: Acute myeloid leukemia (AML) is a fatal hematological malignancy which is resistant to a variety of chemotherapy drugs. Myeloid cell leukemia-1 (Mcl-1), a death-inhibiting protein that regulates apoptosis, has been shown to be overexpressed in numerous malignancies. In addition, it has been demonstrated that the expression level of the Mcl-1 gene increases at the time of leukemic relapse following chemotherapy. The aim of this study was to target Mcl-1 by small interference RNA (siRNA) and analyze its effects on survival and chemosensitivity of acute myeloid leukemia cell line HL-60. Materials and Methods: siRNA transfection was performed with a liposome approach. The expression levels of mRNA and protein were measured by real-time quantitative PCR and Western blot analysis, respectively. Trypan blue assays were performed to evaluate tumor cell growth after siRNA transfection. The cytotoxic effects of Mcl-1 siRNA (siMcl-1) and etoposide were determined using MTT assay on their own and in combination. Apoptosis was quantified using a DNA-histone ELISA assay. Results: Transfection with siMcl-1 significantly suppressed the expression of Mcl-1 mRNA and protein in a time-dependent manner, resulting in strong growth inhibition and spontaneous apoptosis. Surprisingly, pretreatment with siMcl-1 synergistically enhanced the cytotoxic effect of etoposide. Furthermore, Mcl-1 down-regulation significantly increased apoptosis sensitivity to etoposide. No significant biological effects were observed with negative control siRNA treatment. Conclusions: Our results suggest that specific suppression of Mcl-1 by siRNA can effectively induce apoptosis and overcome chemoresistance of leukemic cells. Therefore, siMcl-1 may be a potent adjuvant in leukemia chemotherapy.

VEGF siRNA Delivery by a Cancer-Specific Cell-Penetrating Peptide

  • Lee, Young Woong;Hwang, Young Eun;Lee, Ju Young;Sohn, Jung-Hoon;Sung, Bong Hyun;Kim, Sun Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.367-374
    • /
    • 2018
  • RNA interference provides an effective tool for developing antitumor therapies. Cell-penetrating peptides (CPPs) are delivery vectors widely used to efficiently transport small-interfering RNA (siRNA) to intracellular targets. In this study, we investigated the efficacy of the cancer-specific CPP carrier BR2 to specifically transport siRNA to cancer-target cells. Our results showed that BR2 formed a complex with anti-vascular endothelial growth factor siRNA (siVEGF) that exhibited the appropriate size and surface charge for in vivo treatment. Additionally, the BR2-VEGF siRNA complex exhibited significant serum stability and high levels of gene-silencing effects in vitro. Moreover, the transfection efficiency of the complex into a cancer cell line was higher than that observed in non-cancer cell lines, resulting in downregulated intracellular VEGF levels in HeLa cells and comprehensively improved antitumor efficacy in the absence of significant toxicity. These results indicated that BR2 has significant potential for the safe, efficient, and specific delivery of siRNA for diverse applications.

HDAC6 siRNA Inhibits Proliferation and Induces Apoptosis of HeLa Cells and its Related Molecular Mechanism

  • Qin, Hai-Xia;Cui, Hong-Kai;Pan, Ying;Yang, Jun;Ren, Yan-Fang;Hua, Cai-Hong;Hua, Fang-Fang;Qiao, Yu-Huan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3367-3371
    • /
    • 2012
  • Objective: To investigate the effects of histone deacetylase 6 (HDAC6) siRNA on cell proliferation and cell apoptosis of the HeLa cervical carcinoma cell line and the molecular mechanisms involved. Methods: Division was into three groups: A, the untreated group; B, the control siRNA group; and C, the HDAC6 siRNA group. Lipofectamine 2000 was used for siRNA transfection, and Western blot analysis was used to determine the protein levels. Cell proliferation and apoptosis were characterized using a CCK-8 assay and flow cytometry, respectively. Results: HDAC6 protein expression in the HDAC6 siRNA-transfection group was significantly lower (P < 0.05) than in the untreated and control siRNA groups. The CCK-8 kit results demonstrated that the proliferation of HeLa cells was clearly inhibited in the HDAC6 siRNA transfection group (P < 0.05). In addition, flow cytometry revealed that the early apoptotic rate ($26.0%{\pm}0.87%$) was significantly elevated (P < 0.05) as compared with the untreated group ($10.6%{\pm}1.19%$) and control siRNA group ($8.61%{\pm}0.98%$). Furthermore, Western blot analysis indicated that bcl-2 protein expression in the HDAC6 siRNA-transfection group was down-regulated, whereas the expression of p21 and bax was up-regulated. Conclusion: HDAC6 plays an essential role in the occurrence and development of cervical carcinoma, and the down-regulation of HDAC6 expression may be useful molecular therapeutic method.