• Title, Summary, Keyword: shear resistance

Search Result 995, Processing Time 0.046 seconds

Shear resistance characteristic and ductility of Y-type perfobond rib shear connector

  • Kim, Sang-Hyo;Park, Se-Jun;Heo, Won-Ho;Jung, Chi-Young
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.497-517
    • /
    • 2015
  • This study evaluates behavior of the Y-type perfobond rib shear connector proposed by Kim et al. (2013). In addition, an empirical shear resistance formula is developed based on push-out tests. Various types of the proposed Y-type perfobond rib shear connectors are examined to evaluate the effects of design variables such as concrete strength, number of transverse rebars, and thickness of rib. It is verified that higher concrete strength increases shear resistance but decreases ductility. Placing transverse rebars significantly increases both the shear resistance and ductility. As the thickness of the ribs increases, the shear resistance increases but the ductility decreases. The experimental results indicate that a Y-type perfobond rib shear connector has higher shear resistance and ductility than the conventional stud shear connector. The effects of the end bearing resistance, resistance by transverse rebars, concrete dowel resistance by holes, and concrete dowel resistance by Y-shape ribs on the shear resistance are estimated empirically based on the push-out test results and the additional push-out test results by Kim et al. (2013). An empirical shear resistance formula is suggested to estimate the shear resistance of a Y-type perfobond shear connector for design purposes. The newly developed shear resistance formula is in reasonable agreement with the experimental results because the average ratio of measured shear resistance to estimated shear resistance is 1.024.

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

Review of stud shear resistance prediction in steel-concrete composite beams

  • Bonilla, Jorge;Bezerra, Luciano M.;Mirambell, Enrique;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.355-370
    • /
    • 2018
  • In steel-concrete composite beams, longitudinal shear forces are transferred across steel flange-concrete slab interface by means of shear connectors. The connector behavior is highly non-linear and involves several complex mechanisms. The design resistance and stiffness of composite beams depends on the shear connection behavior and the accuracy in the connector resistance prediction is essential. However determining the stud shear resistance is not an easy process: analytical methods do not give an adequate response to this problem and it is therefore necessary to use experimental methods. This paper present a summary of the main procedures to predict the resistance of the stud shear connectors embedded in solid slab, and stud shear connectors in composite slab using profiled steel sheeting with rib perpendicular to steel beam. A large number of experimental studies on the behavior of stud shear connectors and reported in the literature are also summarized. A comparison of the stud shear resistance prediction using six reference codes (AISC, AASHTO, Eurocode-4, GB50017, JSCE and AS2327.1) and other procedures reported in the literature against experimental results is presented. From this exercise, it is concluded that there are still inaccuracies in the prediction of stud shear resistance in all analysed procedures and that improvements are needed.

Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams

  • El-Sayed, Ahmed K.;Shuraim, Ahmed B.
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.4
    • /
    • pp.513-525
    • /
    • 2016
  • The resistance-demand approach has emerged as an effective approach for determining the shear capacity of reinforced concrete beams. This approach is based on the fact that both the shear resistance and shear demand are correlated with flexural tensile strain from compatibility and equilibrium requirements. The basic shear strength, under a given loading is determined from the intersection of the demand and resistance curves. This paper verifies the applicability of resistance-demand procedure for predicting the shear capacity of high strength concrete beams without web reinforcement. A total of 18 beams were constructed and tested in four-point bending up to failure. The test variables included the longitudinal reinforcement ratio, the shear span to depth ratio, and the beam depth. The shear capacity of the beams was predicted using the proposed procedure and compared with the experimental values. The results of the comparison showed good prediction capability and can be useful to design practice.

Shear resistance of stud connectors in high strength concrete

  • Lee, Young Hak;Kim, Min Sook;Kim, Heecheul;Kim, Dae-Jin
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.647-661
    • /
    • 2014
  • The use of steel-concrete composite members has been significantly increased as they have the advantages of the reduction of cross sectional areas, excellent ductility against earthquake loadings and a longer life span than typical steel frame members. The increased use of composite members requires an intensive study on the shear resistance evaluation of stud connectors in high strength concrete. However, the applicability of currently available standards is limited to composite members with normal and lightweight strength concrete. In this paper, push-out tests were performed on 24 specimens to investigate the structural behavior and shear resistance of stud connectors in high strength concrete. Test parameters include the existence of shear studs, height to diameter ratio of a shear stud, its diameter and concrete cover thickness. A shear resistance equation of stud connectors is proposed through a linear regression analysis based on the test results. Its accuracy is compared with those of existing shear resistance equations for studs in normal and lightweight concrete.

Shear Resisting Effects of Protruded Nails by Pressure Grouting (가압식 돌기네일의 전단저항 효과)

  • Hong, Cheorhwa;Lee, Sangduk
    • Journal of the Korean Geoenvironmental Society
    • /
    • v.18 no.7
    • /
    • pp.13-20
    • /
    • 2017
  • Soil nailing is ground reinforcement method using the shear strength of ground and the pullout shear resistance force of nail. It is mainly used for reinforcement of cut slopes, earth retaining structures and retaining walls, etc. It may be designed considering the pullout resistance of nail in the case of earth retaining structure and retaining wall, but it should be designed considering not only pullout resistance but also shear and bending resistance in the case of slope. However, conservative designs considering only pullout resistance are being done and most of the studies are about increasing pullout resistance by improving of material, shape and construction method of nail. Actually, Shear bending deformations occur centering on the active surface in ground reinforced with the nail. The grout with relatively low strength is destroyed and separated from the reinforcing material. As a result, the ground is collapsed while reducing the frictional resistance rapidly. Therefore, it is necessary to develop the method to increase the shear resistance while preventing separation of nail and grout body. In this study, an experimental study was conducted on new soil nailing method which can increase shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar.

Shear Resistance Evaluation of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 전단내력 평가)

  • Shin, Hyun-Seop;Park, Ki-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5290-5298
    • /
    • 2013
  • In order to apply a mechanical deck joint to the prefabricated steel grid composite decks, shear resistance of a joint composed of concrete shear key and high-tension bolt is experimentally evaluated by the push-out test. Shear resistance evaluated by the test is compared with resistance estimated by empirical and design equations based on the shear friction theory. Test results show that joint specimens bonded by epoxy have about 10% more shear resistance than specimens with strengthened shear key by steel plates, but in the case of specimens with strengthened shear key there is smaller resistance deviation than specimens bonded by epoxy. In comparison with resistances estimated by empirical and design equations, the deck joint can be safely designed. But because the existed shear resistance of deck joint is underestimated by the ACI-318, application of the LRFD design equation could be more reasonable.

Shear behavior of exposed column base connections

  • Cui, Yao
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.357-371
    • /
    • 2016
  • Column base connections are critical components in steel structures because they transfer axial forces, shear forces and moments to the foundation. Exposed column bases are quite commonly used in low- to medium-rise buildings. To investigate shear transfer in exposed column base plates, four large scale specimens were subjected to a combination of axial load (compression or tension) and lateral shear deformations. The main parameters examined experimentally include the number of anchor rod, arrangement of anchor rod, type of lateral loading, and axial force ratio. It is observed that the shear resisting mechanism of exposed column base changed as the axial force changed. When the axial force is in compression, the resisting mechanism is rotation type, and the shear force will be resisted by friction force between base plate and mortar layer. The specimens could sustain inelastic deformation with minimal strength deterioration up to column rotation angle of 3%. The moment resistance and energy dissipation will be increased as the number of anchor rods increased. Moreover, moment resistance could be further increased if the anchor rods were arranged in details. When the axial force is in tension, the resisting mechanism is slip type, and the shear force will be resisted by the anchor rods. And the shear resistance was reduced significantly when the axial force was changed from compression to tension. The test results indicated that the current design approach could estimate the moment resistance within reasonable acceptance, but overestimate the shear resistance of exposed column base.

Shear Resistance of BESTOBEAM Shear Connector According to the Length (BESTOBEAM 전단연결재의 길이에 따른 전단 내력 평가)

  • Ahn, Hyung Joon;Jung, In Yong;Kim, Young Ju;Hwang, Jae Sun
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.483-491
    • /
    • 2015
  • Shear resistance of BESTOBEAM, which has angle as shear connector and was developed with purpose of easy construction, was tested. With the test results shear resistance design equation was proposed. Unlike angle connector of Eurocode 4, BESTO BEMA shear connector behaves like fixed-end beam. Therefor longer span of the shear connector the lower shear resistance it has. As a result, shear resistance of BESTOBEAM shear connector according to its length tends to decrease as its length gets longer. The authors proposed design equation of angle shear connector sased on the test results. The results from the test and the proposed equation match within 10% error range. Therefore the proposed equation can be used for designing shear connector of BESTOBEAM.

Quality Evaluation of Resistance Spot Welding using Acoustic Emission (음향방출을 이용한 저항 점용접의 용접 품질평가)

  • Jo Dae-Hee;Rhee Zhang-Kyu;Park Sung-Oan;Cho Jin-Ho;Kim Bong-Gag;Woo Chang-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.4
    • /
    • pp.98-104
    • /
    • 2006
  • In this paper, for the purpose of investigation the acoustic emission(AE) behaviors during resistance spot welding process and tension test of spec steels. As the results present the resistance spot welding method that can get suitable welding qualities or structural integrity estimating method. The resistance spot welding process consists of several stages: set-down of the electrodes; squeeze; current flow; forging; hold time; and lift-off. Various types of AE signals are produced during each of these stages. For tensile-shear test and cross tensile test in resistance spot welded specimens, fracture pa 야 ems are produced: tear fracture; shear fracture; and plug fracture. Tensile-shear specimens strength appeared higher than cross tensile specimens one. In case of tensile-shear specimen happened tear fracture that crack happens in most lower plate. Also, in case of cross tensile specimens, upper plate and lower plate are detached perfect fracture was exposed increases a little as acting force is lower than ordinary welding condition. Therefore, the structure which is combined by resistance spot welding confirmed that welding design must attain so that shear stress may can interact mainly.