• Title, Summary, Keyword: sexing

Search Result 77, Processing Time 0.038 seconds

Use of the Non-electrophoretic Method to Detect Testis Specific Protein Gene for Sexing in Preimplantation Bovine Embryos

  • Huang, Jinming;You, Wei;Wu, Naike;Tan, Xiuwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.866-871
    • /
    • 2007
  • Testis-specific protein (TSPY) is a Y-specific gene, with up to 200 copy numbers in bulls. In order to make bovine embryo sexing under farm condition more feasible, the possibility of using a non-electrophoretic method to detect the TSPY gene for sexing bovine early embryos was examined. Primers were designed to amplify a portion of the TSPY gene and a common gene as an internal control primer. PCR optimization was carried out using a DNA template from bovine whole blood. Furthermore, embryo samples were diagnosed by this method and the sexing results were contrasted with those of the Loop-Mediated Isothermal Amplification (LAMP) method. The results showed that TSPY was as reliable a sexing method as LAMP. Forty-three morula and blastocyst embryos collected from superovulated donor dairy cattle were sexed by this method, and twenty-one embryos judged to be female embryos were transferred non-surgically to recipients 6 to 8 days after natural estrus. Out of 21 recipients, 9 were pregnant (42.86%) and all delivered female calves. The results showed that the sex predicted by this protocol was 100% accurate. In conclusion, the TSPY gene was a good male specific marker and indicated that a non-electrophoretic method was feasible and accurate to detect the TSPY gene for sexing preimplantation bovine embryos.

Sex Determination of Hanwoo IVM/IVF Embryos by PCR (PCR 기법을 이용한 한우 체외수정란의 성판별)

  • 조은정;박동헌;박춘근;정희태;김정익;양부근
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.3
    • /
    • pp.299-309
    • /
    • 2000
  • This study was performed 1) to establish the optimal PCR condition of sex determination in Hanwoo IVM/IVF embryos, 2) to examine the sex determination and sex ratio to the developmental stages of Hanwoo IVM/IVF embryos by two-step PCR method. The sexing of bovine IVF embryos were accurately determined by PCR methods using Y chromosome specific DNA primer(BOV 97M, 141bp) and bovine specific DNA primer(216bp). The fregment size were shown at 141 and 216 base pairs(bp) in male, and 216 bp in female. Two-steps PCR method in which the samples were amplified by 15 cycles with Y chromosome specific DNA primer and then amplified by additional 30 cycles with bovine specific DNA primer was effective in the sexing of bovine IVF embryos. The zona-free embryos were more effective than zona-intact embryos in bovine IVF embryo sexing. The appearance of Y chromosome specific band was 45.2% in embryos treated with protease K and 53.3% in embryos treated with freezing and thawing repeatedly. The optimun volume of DNA for sexing of Hanwoo IVF embryos were 2 to 10 $\mu$1 in Zona-free embryos and 12 to 13 $\mu$1 in zona-intact embryos. The sexing rate of bovine IVF embryos by PCR was 96.0% and questionable rate not identified sex was 4.0%, respectively. Among the sexed embryos, the percentage of male and female was 49.7% and 46.3%, respectively, the sex ratio was 1: 1.1. The successful rate of embryo sexing was increased to the developmental stages.

  • PDF

The Improvement of Sexing PCR Conditions and Survival Rate of Blastomere Separation Method in the Bovine Embryo (소 수정란의 할구 분리방법에 따른 생존율 및 성판별 PCR의 개선)

  • Kim, Sang-Hwan;Kim, Kyong-Lae;Lee, Ho-Jun;Jung, Kyoung-Sub;Baek, Jun-Seok;Jung, Duk-Won;Kim, Dae-Eun;Lee, Deuk-Hwan;Yoon, Jong-Taek
    • Journal of Embryo Transfer
    • /
    • v.28 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • The present study was conducted to compare on embryo survival rates by blastomere isolation methods, and establish the optimal PCR procedure for perform the sexing of bovine blastocysts produced by IVF. IVF embryos used in the study was used the Bisected or Sliced methods for blastomere isolation, and the survival rates of blastocyst with rapid way of sexing PCR was assessed. In the present study for survival rates in blastocyst was the total cleavage rate was 75% and a blastocyst development among cleaved embryos was 40%. Survival rate of embryos treated with intact, bisected or sliced method was 100, 63.3 or 81.3%, respectively. Therefore, survival rate of embryos treated with sliced method was higher compared to that of embryos treated with bisected method. The sexing rate of female or male was not significantly different between S4BFBR primer and BSY + BSP primer (1.75 : 1 vs. 1.43 : 1), respectively. Because of the PCR amplification using the S4BFBR primer was simpler method than multiplex PCR amplification method. Furthermore, the accuracy of sexing rate and reduction of PCR work time between 2-step and 3-step of PCR methods was 98.0% / 1.5 hr and 97.0% / 3.5 hr, respectively. Based on these results, it can be suggested that the sliced and PCR methods we developed was very effective method to reduce time consuming and procedure of PCR amplification for sexing with the increase of survival rate on the blastocyst.

Sexing of Sheep Embryos Produced In vitro by Polymerase Chain Reaction and Sex-specific Polymorphism

  • Saravanan, T.;Nainar, A. Mahalinga;Kumanan, K.;Kumaresan, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.5
    • /
    • pp.650-654
    • /
    • 2003
  • The accuracy of Polymerase chain reaction (PCR) assay in sexing of sheep embryos was assessed in this study. A total of 174 ovine embryos produced in vitro at different stages of development (2, 4-8 cell stages, morula and blastocyst) were sexed. The universal primers (P1-5EZ and P2-3EZ) used in this assay amplified ZFY/ZFX-specific sequences and yielded a 445 bp fragment in both sexes. Restriction enzyme analysis of ZFY/ZFX-amplified fragments with Sac I exhibited polymorphism between sexes, three and two fragments in males and in females, respectively. For verification of accuracy, blood samples of known sex were utilized as positive controls in each test. The mean percentages of sex identification by this method at 2 cell, 4-8 cell, morula and blastocyst were $73.00{\pm}5.72$, $89.77{\pm}3.79$, $3.33{\pm}8.08$ and $79.6{\pm}9.09$, espectively with the over all male to female ratio of 1:0.87. It is concluded that the ZFY/ZFX based method is highly reliable for the sexing of sheep embryos.

Sexing Goat Embryos by PCR Amplification of X- and Y- chromosome Specific Sequence of the Amelogenin Gene

  • Chen, A-qin;Xu, Zi-rong;Yu, Song-dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1689-1693
    • /
    • 2007
  • The objective of this study was to develop a simplified, efficient, and accurate protocol for sexing goat embryos. Based on the amelogenin gene located on the conservation region of X- and Y- chromosomes, a pair of primers was utilized and the system of PCR was established to amplify a 262 bp fragment from the X- chromosome in female goats, and a 262 bp fragment from X- chromosome and 202 bp fragment from the Y- chromosome in male goats, respectively. The accuracy and specificity of the primers were assessed using DNA template extracted from goat whole blood sample of known sex. 100% (10/10) concordance was obtained by using the PCR assay. Fifty-one biopsied embryos were transferred into 25 recipient goats on the same day that the embryos were collected and sex of the kid was confirmed after parturition. Eighteen kids of predicted sex were born. The biopsied samples from 51 goat embryos were amplified with 100% efficiency and 94.7% accuracy. In conclusion, our results indicated that PCR sexing protocols based on the amelogenin gene is highly reliable and suitable for sex determination of goats.

Study on the Sexing of Mouse Embryos by Chromosomal Analysis (염색체 분석에 의한 생쥐초기부의 성 판별에 관한 연구)

  • 신현동;김정익
    • Korean Journal of Animal Reproduction
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 1986
  • As a preliminary experiment to establish the process on the sexing of mouse embryos by chromosomal analysis, present studies were carried out with inbred (ICR, C57BL) and F1 hybrid [(ICR${\times}$C57BL) = F1 ${\times}$ ICR] mice to investigate the blastomere numbers and mitotic indices (M.I.) to the developmental stage of embryos recovered, the optimum periods of anti-mitotic agent administration, the successful rates of sexing and sex-ratio. The results obtained were summarized as follows: 1. The blastomere numbers (mean${\pm}$S.E.) of the morula and blastocyst were 18${\pm}$0.4 and 54${\pm}$0.7, respectively. 2. Whereas the M.I. of F1 hybrid (16${\pm}$0.2%) was higher than that fo inbred ICR (15${\pm}$0.1%) and C57BL (12${\pm}$0.6%) in the different strains, the morula (7${\pm}$0.6%) was higher than that of blastocyst (6${\pm}$0.4%) in the case of embryo stages. 3. Following to anti-mitotic agents treated, the M.I. of embryos cultured with Colcemid (17${\pm}$1.1%) was superior to that fo embryos cultured with Velban (12${\pm}$0.9%) and the Colcemid injection (7${\pm}$0.4%). 4. The successful rate of sexing in the blastocyst (38.7%; 124/320) was superior to the morula (35.9%; 52/145), and the F1 hybrid (48.1%) was higher than that of inbred ICR (42.4%) and C57 BL (28.2%). 5. In the successful rate of sexing to the methods of administration, the embryos cultured with Colcemid (46.0%) was superior to that of embryos cultured with Velban (39.0%) and the Colcemid injection (38.8%). 6. Of 98 embryos sexed after culture with Colcemid, 89(90.8%) were observed between 2 and 4 hrs. In the case of Velban treatment, 83.1% (74/89) was observed between 2$\frac{1}{2}$ and 4$\frac{1}{2}$ hrs. 7. Out of 761 prepared embryos it was possible to sex 311; 157 were male and 154 were female, i.e.a sex-ratio of 50% a, pp.oximately.

  • PDF

Embryo Gender Ratio and Developmental Potential after Biopsy of In Vivo and In Vitro Produced Hanwoo Embryos

  • Cho, Sang-Rae;Choe, Chang-Young;Son, Jun-Kyu;Cho, In-Cheol;Yoo, Jae-Gyu;Kim, Hyung-Jong;Ko, Yeong-Gyu;Kim, Nam-Young;Han, Sang-Hyun;Park, Yong-Sang;Ko, Moon-Suck
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.269-273
    • /
    • 2012
  • The present study was to assess the in vitro viability and sexing rate of bovine embryos. Blastocysts were harvested on day 7~9 day after insemination(in vitro and in vivo), and the sex of the embryos was examined using the LAMP method. Embryo cell biopsy was carried out in a $80{\mu}l$ drop $Ca^{2+}$, $Mg^{2+}$ free D-PBS and, biopsied embryos viability were evaluated after more 12 h culture in IVMD culture medium. The formation of recovered embryo to expanded and hatching stages had ensued in higher of sexed embryo in vivo than in vitro (100% vs. 89%, p<0.05), and in vitro, the rates of degeneration after sexing were significantly (p<0.05) higher in vitro than in vivo(11% vs. 0.0%). The rates of the predicted sex were female 61% vs. 56%, and male 39% vs. 44% in vivo and in vitro, respectively. The rates of survival following different biopsy methods were seen between punching and bisection method in vivo and in vitro (100% vs. 89% and 100% vs, 78% respectively). Biopsy method by punching was significantly (p<0.05) higher than bisection between produced embryos in vivo and in vitro. The present data indicate that with microblade after punching for embryo sexing results in high incidence of survivability on development after embryo biopsy. It is also suggested that LAMP-based embryo sexing suitable for field applications.

Influence of Early- and Late-feathering Phenotype on Productive Performance in the Feather-sexing Strains of Korean Native Chicken (한국재래닭 깃털 성감별 계통에 있어 조우성과 만우성이 개체의 생산능력에 미치는 영향)

  • Sohn, Sea Hwan;Kim, Na Young;Park, Dhan Bee;Song, Hae Ran;Cho, Eun Jung;Choi, Seong Bok;Heo, Kang Nyeong;Choi, Hee Cheol
    • Korean Journal of Poultry Science
    • /
    • v.40 no.3
    • /
    • pp.263-270
    • /
    • 2013
  • The vent sexing and the auto-sexing by using sex-linked traits are general sexing methods of day-old chicks. Currently, the feather sexing which is based on the differences in the feather characteristics at hatching is the representative sexing method of chicken, because the late-feathering is sex-linked trait. The feather sexing can be used if the breed has dominant feathering gene (K) in maternal and recessive gene ($k^+$) in paternal. Therefore it is necessary to identify the association of feathering genes and quantitative traits in chickens. In this study, we investigated the influence of the rate of feathering on productive traits in Korean Native Chicken. In results, there was no significant difference between early-feathering chickens and late-feathering chickens in reproductive performance such as fertility and hatchability. Livability, body weights, egg production, egg weight and egg quality also did not significantly differ between early- and late-feathering chickens. Age at first egg was the only trait of those tested in which significant difference was observed. The early-feathering chickens laid eggs 3 days earlier than late-feathering chicken. As a result, there is no influence of feathering phenotypes on productive performance in Korean Native Chickens. Consequentially, establishing the feather sexing strain is available using the Korean Native Chicken breed without considering of the effect of feathering genes on productive traits.

Comparison of Sexing Analysis between Karyotyping and Blasomere-PCR in Bovine embryos

  • Chang, Suk-Min;Lee, Jong-Ho;Park, Joong-Hoon;Park, Wha-Sik;Park, Chang-Sik;Jin, Dong-Il
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • /
    • pp.92-92
    • /
    • 2003
  • Accurate analysis of nuclear status is needed when biopsied-blastomeres are used for embryo sexing. In this study, the nuclear status of blastomeres derived from 8- to 16-cell stage IVF bovine embryos was analyzed to evaluate the representative of single blastomere for embryo sexing. When 55 embryos were analyzed by PCR following biopsy, the coincident rate of sex determination between biopsied-single blastomere and matched blastocyst by PCR was 80 %. Karyotyping of biastomeres in 8- 16-cell stage bovine embryos was conducted to assess chromosome status of IVF embryos. To establish karyotyping of blastomeres, concentrations of vinblastine sulfate and duration of exposure time for metaphase plate induction with 8- to 16-cell stage bovine embryos were tested. The most effective condition for induction of metaphase plate (>45%) was 1.0 ug/ml vinblastine sulfate treatment for 15 h. In 22 embryos under the condition, only 8 embryos out of ten that had a normal diploid chromosome complement showed a sex-chromosomal composition of XX or XY (36.4%) and 2 diploid embryos showed mosaicism of the opposite sex of XX and XY in blastomeres of embryo (9.1%). One haploid embryo contained only one X-chromosome (4.5%). Four out of the other 11 embryos having a mixoploid chromosomal complement contained haploid blastomere with wrong sex chromosome (18.2%). These results suggested that morphologically normal bovine embryos derived from IVF had considerable proportion of mixoploid and sex-chromosomal mosaicism which could be the cause of discrepancies of the sex between biopsied-single blastomere and matched blastocyst by PCR analysis.

  • PDF