• Title, Summary, Keyword: self-assembly

Search Result 647, Processing Time 0.115 seconds

Self-Assembly of Triblock Copolymers in Melts and Solutions

  • Kim, Seung-Hyun;Jo, Won-Ho
    • Macromolecular research
    • /
    • v.9 no.4
    • /
    • pp.185-196
    • /
    • 2001
  • The self-assembly of block copolymers can lead to a variety of ordered structures on a nanometer scale. In this article, the self-assembling behaviors of triblock copolymers in the melt and the selective solvent are described with the results obtained from the computer simulations. With the advances of computing power, computer simulations using molecular dynamics and Monte Carlo techniques make it possible to study very complicated phenomena observed in the self-assembly of triblock copolymer. 13king full advantage of the computer simulation based on well-defined model, the effects of various structural and thermodynamic parameters such as the copolymer composition, the block sequence, the pairwise interaction energies, and temperature on the self-assembly are discussed in some detail. Some simulation results are compared with experimental ones End analyzed by comparing them with the theoretical treatment.

  • PDF

Surface-Induced Self-Assembly of Conjugated Organic Molecules for High-Performance Organic Thin Film Transistors

  • Cho, Kil-Won
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • /
    • pp.162-163
    • /
    • 2006
  • Control over surface induced self-assembly of electronically active pi-conjugated molecules provides great opportunities to fine-tune and optimize their electrical properties in organic electronics. In this study, with the aim of enhancing the electrical performances by promoting surface induced two-dimensional self-assembly in representative pi-conjugated molecules such as poly (3-hexylthiophene) and pentacene, we have controlled the intermolecular interaction at the interface between pi-conjugated molecules and substrate by using self-assembled monolayers functionalized with various groups. We will discuss the dependency of pi-conjugated molecules on the specific properties of the substrate surface and the effect of surface induced self-assembly on electrical performances in organic transistors.

  • PDF

Fabrication of Functional Nanomaterials by Peptide Self-Assembly

  • Park, Chan-Beom
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • /
    • pp.8.1-8.1
    • /
    • 2009
  • The self-assembly of peptide-based building blocks into nanostructures is an attractive route for fabricating novel materials because of their capacity for molecular recognition and functional flexibility as well as the mild conditions required in the fabrication process. Among various peptide-based building blocks forming nanostructures, the simplest building blocks are aromatic dipeptides like diphenylalanine, which can readily self-assemble into nanotubes in aqueous solutions at ambient conditions. Recently, we have developed a high-temperature solid-phase self-assembly process for diphenylalanine. Through this novel process, we succeeded in the growth of vertically well-aligned, uniform nanowires from amorphous peptide thin film. To demonstrate the versatility of our approach, we also fabricated a micropattern of peptide nanowires by combining our solid-phase growth method and simple soft lithographic techniques. We believe that our studies on peptide self-assembly will provide a new horizon for peptide-based nanofabrication.

  • PDF

Self-assembly of Helical structure by defected nanosheet

  • Yoon, Sang-hee;Sim, Eunji
    • Proceeding of EDISON Challenge
    • /
    • /
    • pp.75-79
    • /
    • 2016
  • A helical nanosturctrue can be obtained by self-assembly method. Utilizing DPD simulation coarse-grained model, we patterned 2D layer nanosheets with repeated diagonal defects and grafts, and programed to self-roll into hollow helix structure. The defected pattern side caused anisotropy, and formed helix or helix-like structure. This opens the possibility to control the helix pitch or cavity radius. In this work, we designed several patterns about diagonal defect with a variety of defect side densities and defect widths and then simulation was carried out. Thus, our results have that parameters are affecting self-assembly of nanosheets and their conformation.

  • PDF

Self-Assembly and Photopolymerization of Diacetylene Molecules on Surface of Magnetite Nanoparticles

  • Vinod, T.P.;Chang, Ji-Hoon;Kim, Jin-Kwon;Rhee, Seog-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.799-804
    • /
    • 2008
  • An amphiphilic diacetylene compound was deposited on the surface of nano sized magnetite particles ($Fe_3O_4$) using a self-assembly method. The diacetylene molecular assembly formed on the surface of nanoparticle was subjected to photopolymerization. This resulted in the formation of a polymeric assembly on the surface of the nanoparticles in which the adjacent diacetylene molecules were connected through conjugated covalent networks. The presence of immobilized polymer species on the surface of nanoparticles is expected to protect them from agglomeration and ripening, thereby stabilizing their physical properties. In this work, $Fe_3O_4$ nanoparticles were prepared by chemical coprecipitation method and the diacetylene molecule 10,12- pentacosadiynoic acid (PCDA) was anchored to the surface of $Fe_3O_4$ nanoparticles through its carboxylate head group. Irradiation of UV light on the nanoparticles containing immobilized diacetylenes resulted in the formation of a polymeric assembly. Presence of diacetylene molecules on the surface of nanoparticles was confirmed by X-ray photoelectron spectroscopy and FT-IR measurements. Photopolymerization of the diacetylene assembly was detected by UV-Visible spectroscopy. Magnetic properties of the nanoparticles coated with polymeric assembly were investigated with SQUID and magnetic hysteresis showed superparamagnetic behaviors. The results put forward a simple and effective method for achieving polymer coating on the surface of magnetic nanoparticle.

Effect of Neutral Solvent on the Phase Behavior of Polystyrene-block-Poly(n-butyl methacrylate) Copolymers

  • Li, Chaoxu;Li, Guang-Hua;Moon, Hong-Chul;Lee, Dong-Hyun;Kim, Jin-Kon;Cho, Jun-Han
    • Macromolecular research
    • /
    • v.15 no.7
    • /
    • pp.656-661
    • /
    • 2007
  • The effects of a neutral solvent of dioctyl phthalate (DOP) on the phase behavior of symmetric polystyrene-block-poly(n-butyl methacrylate) copolymers (PS-b-PnBMA) were assessed herein. Closed-loop phase behavior with a lower disorder-to-order transition (LDOT) and an upper order-to-disorder transition (UODT) was observed for PS-b-PnBMA/DOP solution when the quantity of DOP was carefully controlled. When the molecular weight of PS-b-PnBMA became larger, the LDOT did not appreciably change at smaller quantities of DOP. With larger quantities of DOP, the reduction in the UODT is greater than the increase in the LDOT. This behavior is discussed in accordance with a molecular theory predicated on a compressible random-phase approximation.

Supramolecular Assembly toward Organic Nanostructures

  • Lee, Myong-Soo
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • /
    • pp.173-173
    • /
    • 2006
  • We have explored a strategy to control the supramolecular nano-structures self-assembled from rigid segments through attachment of flexible chains through microphase separation and anisotropic arrangement. Supramolecular structures formed by self-assembly of rigid building blocks can be precisely controlled from 1-D layered, 3-D bicontinuous cubic to 2-D cylindrical structures by systematic variation of the type and relative length of the respective blocks. Furthermore, depending on the individual molecular architectures, rigid building blocks self-assemble into a wide range of supramolecular structures such as honeycomb, disk, cylinder, helix, tube, barrel stave, and nano-cage.

  • PDF

Fabrication of Ultrathin Multilayer Films Using Layer-by-Layer Self-Assembly Method and Their Application (Layer-by-Layer 자기조립현상을 이용한 다층초박막의 제조와 응용)

  • 차국헌;조진한
    • Polymer Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.260-273
    • /
    • 2004
  • Layer-by-layer 자기조립방법 (self-assembly method) 이라고 불리는 담지자기조립방법 (dip self-assembly method)을 이용한 다층초박막은 다양한 전기적, 자기적 성질을 갖는 물질뿐만 아니라 DNA 또는 효소 (enzyme)같은 바이오 물질들을 기판의 크기나 형태에 관계없이 각각의 층에 나노미터 두께로 삽입시킬 수 있음에 따라서 초박막안에 우리가 원하는 특정 성질을 부여할 수 있다. (중략)

  • PDF

Preparation of Polymeric Self-Assembly and Its Application to Biomaterials

  • Cho, Chong-Su;Park, In-Kyu;Nah, Jae-Woon;Toshihiro Akaike
    • Macromolecular research
    • /
    • v.11 no.1
    • /
    • pp.2-8
    • /
    • 2003
  • The self-assembly of polymers can lead to supramolecular systems and is related to the their functions of material and life sciences. In this article, self-assembly of Langmuir-Blodgett (LB) films, polymer micelles, and polymeric nanoparticles, and their biomedical applications are described. LB surfaces with a well-ordered and layered structure adhered more cells including platelet, hepatocyte, and fibroblast than the cast surfaces with microphase-separated domains. Extensive morphologic changes were observed in LB surface-adhered cells compared to the cast films. Amphiphilic block copolymers, consisting of poly(${\gamma}$-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) [or poly(N-isopropylacrylamide) (PNIPAAm)] as the hydrophilic one, can self-assemble in water to form nanoparticles presumed to be composed of the hydrophilic shell and hydrophobic core. The release characteristics of hydrophobic drugs from these polymeric nanoparticles were dependent on the drug loading contents and chain length of the hydrophobic part of the copolymers. Achiral hydrophobic merocyanine dyes (MDs) were self-assembled in copolymeric nanoparticles, which provided a chiral microenvironment as red-shifted aggregates, and the circular dichroism (CD) of MD was induced in the self-assembled copolymeric nanoparticles.

Surface Plasmon Resonance Immunosensor for Detection of Legionella pneumophila

  • Oh, Byung-Keun;Lee, Woochang;Bae, Young-Min;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.112-116
    • /
    • 2003
  • An immunosensor based on surface plasmon resonance (SPR) onto a protein G layer by Self-assembly technique was developed for detection of Legionella pneumophila. The protein G layer by self-assembly technique was fabricated on a gold (Au) surface by adsorbing the 11-mercaptoundecanoic acid (MUA) and an activation process for the chemical binding of the free amino (-NH$_2$) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC) in series. The formation of the protein G layer by self-assembly technique on the Au Substrate and the binding of the antibody and antigen in series were confirmed by SPR spectroscopy. The Surface topographies of the fabricated thin films on an Au substrate were also analyzed by using an atomic force microscope (AFM). Consequently, an immunosensor for the detection of L. pneumophila using SPR was developed with a detection limit of up to 10$^2$CFU per mL.