• Title, Summary, Keyword: seismicity of the Korean Peninsula

Search Result 51, Processing Time 0.049 seconds

Seismicity of the Korean peninsula and its Relation with plate tectonics

  • Kim, So Gu;Hyun, Byung Koo
    • Economic and Environmental Geology
    • /
    • v.11 no.2
    • /
    • pp.69-80
    • /
    • 1978
  • The seismicity of the Korean peninsula (2A. D.-1977) is investigated temporally and spatially to estimate seismic hazard zones in the Korean peninsula, based on macroseismic data from description of the historical literature and reported data by JMA, ERI, World Data Center-A, and ISC.

  • PDF

Performance-based earthquake engineering in a lower-seismicity region: South Korea

  • Lee, Han-Seon;Jeong, Ki-Hyun
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.45-65
    • /
    • 2018
  • Over the last three decades, Performance-based Earthquake Engineering (PBEE) has been mainly developed for high seismicity regions. Although information is abundant for PBEE throughout the world, the application of PBEE to lower-seismicity regions, such as those where the magnitude of the maximum considered earthquake (MCE) is less than 6.5, is not always straightforward because some portions of PBEE may not be appropriate for such regions due to geological differences between high- and low-seismicity regions. This paper presents a brief review of state-of-art PBEE methodologies and introduces the seismic hazard of lower-seismicity regions, including those of the Korean Peninsula, with their unique characteristics. With this seismic hazard, representative low-rise RC MRF structures and high-rise RC wall residential structures are evaluated using PBEE. Also, the range of the forces and deformations of the representative building structures under the design earthquake (DE) and the MCE of South Korea are presented. These reviews are used to propose some ideas to improve the practice of state-of-art PBEE in lower-seismicity regions.

Estimation of seismicity parameters of the seismic zones of the Korean Peninsula using incomplete and complete data files (불완전한 자료 및 완전한 자료 목록을 이용한 한반도 지진구들의 지진활동 매개변수 평가)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • /
    • pp.23-30
    • /
    • 1998
  • An estimation of seismic risk parameters by seismic zones of the Korea Peninsula in order to calculate the seismic hazard values using these was erformed. Seven seismic source zones were selected in consideration of seismicity and geology of Korean Peninsula. The seismicity parameters that should be estimated are maximum intensity, activity rate and b value in the Gutenberg - Richter relation. For computation of these parameters, least square method or maximum likelihood method is applied to the earthquake data in two ways; the one for the data without maximum intensity and the other with maximum intensity. Earthquake data since Choseon Dynasty is regarded as complete and estimation of parameters was made for these data using above two ways. And recently, a new method is published that estimate the seismicity parameters using mixed data containing large historical events and recent complete observations. Therefore, this method is applied to the whole earthquake data of the Korean Peninsula. It turns out that the b value computed considering maximum intensity is slightly lower than that computed considering without maximum intensity, and it becomes still lower when the incomplete data prior to Choseon Dynasty is used. In the case of the activity rates, the values obtained without maximum intensity and that with maximum intensity are similar, though they are lower when the incomplete data is used. The values of maximum intensities are usually lower when considering incomplete data. In the seismic source zone including the Yangsan Fault zone, however, the values are higher when considering the incomplete data.

  • PDF

Seismic Characteristics of Tectonic Provinces of the Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • Lee, Kie-Hwa;Kim, Jung-Ki
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.91-98
    • /
    • 2000
  • The seismicity of the Korean Peninsula shows a very irregular pattern of strain release typical of the intraplate seismicity. The Korean Peninsula may be divided into several tectonic provinces of differing tectonics. In this analysis, seismicity parameters for each tectonic province are evaluated from historical as well as instrumental earthquake data of the Korean Peninsula to examine the differences in seismic characteristics among tectonic provinces. Statistical analysis of the earthquake data made of incomplete data before the Choseon Dynasty and complete data afterwards reveals that there exist no significant differences in seismic characteristics between the tectonic provinces. It turns out the b-value in the intensity-frequency relation for the whole peninsula is about 0.6 and the maximum earthquake is about MMI X. The results of this study may be used in the probabilistic seismic hazard analysis of the Korean Peninsula and in estimating the design earthquake in earthquake engineering.

  • PDF

Seismic characteristics of Tectonic Provinces of The Korean Peninsula (한반도 주요 지체구조구별 지진학적 특성)

  • 이기화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • /
    • pp.64-71
    • /
    • 1999
  • Seismicity of the Korean Peninsula shows intraplate seismicity that has irregular pattern in both time and space. Seismic data of the Korean peninsula consists of historical earthquakes and instrumental earthquakes. In this study we devide these data into complete part and incomplete part and considering earthquake size uncertainty estimate seismic hazard parameters - activity rate λ, b value of Gutenberg-Richter relation and maximum possible earthquake IMAX by statistical method in each major tectonic provinces. These estimated values are expected to be important input parameters in probabilistic seismic hazard analysis and evaluation of design earthquake.

  • PDF

Historical earthquake data of Korean (한반도의 역사지진자료)

  • Lee, Gi Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.3-22
    • /
    • 1998
  • Korea boasts of abundant historical earthquake records of almost 1900 events. The epicenters and intensities of these earthquakes are determined on the basis of descriptions and felt areas of the events. It turns out that most of the earthquakes occurred on major faults or tectonic boundaries of the peninsula except for the northeastern part which had been the least disrupted by tectonic disturbances during the Mesozoic. It appears that the crustal layers of the southern and northwestern parts of the peninsula had been severely ruptured during the Mesozoic disturbances and some of the faults thus generated have been active since. The seismicity of the peninsula had been rather low from the first to the fourteenth century, but unusually high from the fifteenth to the eighteenth century, and have been rather low since. This period of unusually high seismicity of the peninsula coincides with that of the northeastern part of China, suggesting the two areas are seismologically closely connected. It appears that most of the seismicity of the peninsula results from the high stress propagating from the Himalayas where the Eurasian and Indian plates collide. The data file of Korean historical earthquakes is not yet complete and supplementary studies are under way. The main purpose of this paper is to provide the data file of Korean historical earthquakes analyzed up to date for geoscientists and engineers in need of this file.

  • PDF

Low Frequency Lg Attenuation Coefficient around the Korean Peninsula (한반도 지역의 저주파 Lg파 감쇠상수)

  • Chung, Tae-Woong;Chung, Kyung-Hoon
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.152-157
    • /
    • 2011
  • Lg amplitude decrease $Q^{-1}$ becomes very important when harzadous earthquakes occurred in neighbor nations such as Japan and China because the Lg phase is the largest seismic phase in Korea. The values of Lg $Q^{-1}$ are correlated with seismic activities from the RTSM for IRIS data with long pair distance of stations and events. The Japanese paths crossing the East Sea (Sea of Japan) show high $Q^{-1}$ values related with seismicity and oceanic crust. The paths of Shanghai having the moderate seismicity show the second highest values followed by the Japanese region, while the paths between Manchuria and the Korean Peninsula exhibit low values associated with the low seismicity of the regions.

Seismicity of the Korean Peninsula and Its Vicinity (한반도와 그 인접지역의 지진활동(地震活動))

  • Kim, So Gu
    • Economic and Environmental Geology
    • /
    • v.13 no.1
    • /
    • pp.51-63
    • /
    • 1980
  • The seismicity of the Korean Peninsula and its vicinity is investigated temporally (2 A. D. to 1978) and spatially to evaluate the seismic risk and to understand the neotectonics around the peninsula. The study has been conducted using macrocosmic data obtained from historical literature, and instrumental records recorded by the Worldwide Network of Standardized Seismographs(WWNSS). The seismicity of the peninsula was active from the 13th through the 17th centuries. A seismic quiescence began at the onset of the 18th century, and has continued for the last 200 years. Presently, the seismicity region is found to be active again. The return periods are determined by a statistical method based upon the cumulative magnitude recurrence. They indicate that the seismic risk is greater in the south or west than in the north or east of the peninsula. Focal mechanism solutions demonstrate that the neotectonic stress distribution in the Japan Sea is greatly influenced by the subduction of the Pacific Plate under the Eurasian Plate or the Philippine Sea Plate, even though the predominate local paleotectonics is controlled by the spreading of the earth's crut.

  • PDF

Comments on Seismicity and Crustal Structure of the Korean Peninsula (한반도의 지진활동과 지각구조)

  • Lee, Kie-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.256-267
    • /
    • 2010
  • Earthquakes in the Korean Peninsula occur along the faults formed and boundaries between major geological units ruptured due to violent tectonic activities during the Mesozoic. E-W and/or ENE-SSW compressive stress regime resulting from collisions between the Eurasian plate and neighbouring the Indian plate, the Pacific plate and the Philippine plate trigger Korean earthquakes of thrust faulting with predominant strike-slip components along the mostly NNE-SSW trending active faults. Seismicity of the Korean peninsula has been moderate to low during the past 20 centuries except for the period from the 15th to the 18th centuries of exceptionally high seismicity, showing the typical irregularity of intraplate seismicity. The structure of the Korean peninsula is rather homogeneous without the Conrad discontinuity sharply dividing the upper and lower crust. Lateral heterogeneities exist in the crust. The crust with an average thickness of about 33 km is thicker in the mountainous region than the plain due to the Airy-type isostatic equilibrium maintained in the peninsula. Crustal P-wave velocity with average of about 6.3 km/sec increases gradually from the near surface to the Moho. The upper mantle P-wave (Pn) velocity is about 7.8 km/sec.

Statistical Testing of the Randomness and Estimation of the Degree of for the Concentration Earthquake Occurrence in the Korean Peninsula (한반도 지진발생의 무작위성에 대한 통계적 검정과 집중도 추정)

  • Kim, Sung-Kyun;Baek, Jang-Sun
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.159-167
    • /
    • 2000
  • We tested the randomness and estimated the degree of concentration for the earthquake occurrence in the Korean Peninsula by using the statistical methods for spatial data. For the randomness test, we applied both of the test statistics based method and the empirical distribution based method to the both of historical and instrumental seismicity data. It was found that the earthquake occurrences for historical and instrumental seismicity data are not random and clustered rather than scattered. A nonparametric density estimation method was used to estimate the concentration degree in the Peninsula. The earthquake occurrences show relatively high concentration on Seoul, Choongnam, Chonbook and Kyungbook areas for the historical seismicity data. Also,'L" shaped concentrations connecting Whanghaedo -the coast of Choongnam -the inland of Kyungbook area are revealed for the instrumental seismicity data.

  • PDF