$CO_2$ Monitoring, Mitigation and Verification (MMV) is the essential part in the Carbon Capture and Storage (CCS) project in order to assure the storage permanence economically and environmentally. In large-scale CCS projects in the world, the seismic time-lapse survey is a key technology for monitoring the behavior of injected $CO_2$. In this study, we developed a basic process procedure for 3-D seismic baseline data from the Aquistore project, Estevan, Canada. Major target formations of Aquistore CCS project are the Winnipeg and the Deadwood sandstone formations located between 1,800 and 1,900 ms in traveltime. The analysis of trace energy and similarity attributes of seismic data followed by spectral decomposition are carried out for the characterization of $CO_2$ injection zone. High trace energies are concentrated in the northern part of the survey area at 1,800 ms and in the southern part at 1,850 ms in traveltime. The sandstone dominant regions are well recognized with high reflectivity by the trace energy analysis. Similarity attributes show two structural discontinuities trending the NW-SE direction at the target depth. Spectral decomposition of 5, 20 and 40 Hz frequency contents discriminated the successive E-W depositional events at the center of the research area. Additional noise rejection and stratigraphic interpretation on the baseline data followed by applying appropriate imaging technique will be helpful to investigate the differences between baseline data and multi-vintage monitor data.