• Title, Summary, Keyword: seed development

Search Result 1,272, Processing Time 0.047 seconds

Screening of Seed Disinfectant for Controlling Brown Leaf Blight in Alisma plantago Double Cropping after Early Rice

  • Shin, Dong-Young;Kwon, Byung-Sun;Lim, June-Taeg;Hyun, Kyu-Hwan;Lim, Jung-Mook;Seo, Young-Nam
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.692-696
    • /
    • 2006
  • This study was conducted to evaluate the effect of seed disinfectant, in control of brown leaf blight, growth characteristics, and dry root yield in the cultivation of Alisma plantago after early maturing rice cropping. Experimental plot was laid out in split plots design with three replications. The major seed disinfectants were benomyl Wp, 20%, Captan Wp, 50%, Triferine Ec, 17%, Etridia zole Ec, 25%, and Thioplant-mythyl Wp, 50%. Even though seed disinfectant treated had no effect on the growth and flowering date of Alisma plantago, dry root yield was increased largely with benomyl Wp, 20%, in seed disinfectant than in the other seed disinfectants and contorl. All seed disinfectants had no injury with standard dosage. But all seed disinfectants had slight injury in the double dosage level for the Alisma plantago. On the basis of yield, vegetative and disease paramerer, benomyl Wp (20%) ($100g/20{\ell}$) had shown superior performance, however, all the seed disinfectants are effective as compare to without treatment.

RAV1 Negatively Regulates Seed Development by Directly Repressing MINI3 and IKU2 in Arabidopsis

  • Shin, Hyun-young;Nam, Kyoung Hee
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1072-1080
    • /
    • 2018
  • A plant-specific B3 domain and AP2 domain-containing transcription factor, RAV1 acts as a negative regulator of growth in many plant species and its transcription was down-regulated by BR and ABA. In this study, we found that RAV1-overexpressing transgenic plants showed abnormally developed ovules, resulting in reduced seed size, weight, and number in a silique. Interestingly, the endogenous expression of RAV1 fluctuated during seed development; it remained low during the early stage of seed development and sharply increased in the seed maturation stage. In plants, seed development is a complex process that requires coordinated growth of the embryo, endosperm, and maternal integuments. Among many genes that are associated with endosperm proliferation and embryo development, three genes consisting of SHB1, MINI3, and IKU2 form a small unit positively regulating this process, and their expression was regulated by BR and ABA. Using the floral stage-specific RNAs, we found that the expression of MINI3 and IKU2, the two downstream genes of the SHB1-MINI3-IKU2 cascade in the seed development pathway, were particularly reduced in the RAV1-overexpressing transgenic plants. We further determined that RAV1 directly binds to the promoter of MINI3 and IKU2, resulting in their repression. Direct treatment with brassinolide (BL) improved seed development of RAV1-overexpressing plants, but treatment with ABA severely worsened it. Overall, these results suggest that RAV1 is an additional negative player in the early stages of seed development, during which ABA and BR signaling are coordinated.

The Effect of Seed-borne Mycoflora from Sorghum and Foxtail Millet Seeds on Germination and Disease Transmission

  • Yago, Jonar I.;Roh, Jae-Hwan;Bae, Soon-Do;Yoon, Young-Nam;Kim, Hyun-Ju;Nam, Min-Hee
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.206-218
    • /
    • 2011
  • The seed-borne mycoflora of sorghum and foxtail millet collected from different growing areas in South Korea were isolated and taxonomically identified using dry inspection, standard blotter and the agar plate method. We investigated the in vitro and in vitro germination rates of disinfected and non-disinfected seeds of sorghum and foxtail millet using sterilized and unsterilized soil. The percent recovery of seed-borne mycoflora from the seed components of sorghum and foxtail millet seeds was determined and an infection experiment using the dominant species was evaluated for seedling emergence and mortality. A higher number of seed-borne fungi was observed in sorghum compared to that of foxtail millet. Eighteen fungal genera with 34 fungal species were identified from the seeds of sorghum and 13 genera with 22 species were identified from the seeds of foxtail millet. Five dominant species such as Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme and Phoma sp. were recorded as seed-borne mycoflora in sorghum and 4 dominant species (Alternaria alternata, Aspergillus flavus, Curvularia lunata, Fusarium moniliforme) were observed in foxtail millet. The in vitro and in vitro germination rates were higher using disinfected seeds and sterilized soil. More seed-borne fungi were recovered from the pericarp compared to the endosperm and seed embryo. The percent recovery of seed-borne fungi ranged from 2.22% to 60.0%, and Alternaria alternata, Curvularia lunata and 4 species of Fusarium were isolated from the endosperm and embryo of sorghum and foxtail millet. Inoculation of the dominant seed-borne fungi showed considerable mortality of seedlings. All the transmitted seed-borne fungi might well be a primary source of infection of sorghum and foxtail millet crops.

Enhancement of Seed Dehiscence by Seed Treatment with Talaromyces flavus GG01 and GG04 in Ginseng (Panax ginseng)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Kim, Seok-Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Seed dehiscence of ginseng (Panax ginseng C. A. Mayer) is affected by moisture, temperature, storage conditions and microbes. Several microbes were isolated from completely dehisced seed coat of ginseng cultivars, Chunpoong and Younpoong at Gumsan, Korea. We investigated the potential of five Talaromyces flavus isolates from the dehiscence of ginseng seed in four traditional stratification facilities. The isolates showed antagonistic activities against fungal plant pathogens, such as Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia nivalis, Botrytis cinerea, and Phytophthora capsici. The dehiscence ratios of ginseng seed increased more than 33% by treatment of T. flavus GG01, GG02, GG04, GG12, and GG23 in comparison to control (28%). Among the treatments, the reformulating treatment of T. flavus isolates GG01 and GG04 showed the highest of stratification ratio of ginseng seed. After 16 weeks, the reformulating treatment of T. flavus isolates GG01 and GG04 significantly enhanced dehiscence of ginseng seed by about 81% compared to the untreated control. The candidate's treatment of T. flavus GG01 and GG04 showed the highest decreasing rate of 93% in seed coat hardness for 112 days in dehiscence period. The results suggested that the pre-inoculation of T. flavus GG01 and GG04 found to be very effective applications in improving dehiscence and germination of ginseng seed.

Characterization of Grape Seed Oil

  • Kang, Han-Chul;Park, Won-Jong;Kim, Si-Dong;Park, Jong-Cheon
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.578-582
    • /
    • 1998
  • Grape seed oil was characterized to assess the usefulness in the food industry. Among the various oils, the initial antioxidant activity was the highest for grape seed oil. Heating the oil at $180^{\sim}C$ for 20 min retained 86% of the initial activity. Grape seed and sesame oils showed a low peroxide value, about 2, implying a less oxidative reaction. The oxidation of grape seed oil was increased to a less extent by heat-treatment than other oils. Light exposure for 1 month resulted in a slight decrease in the antioxidant activity of grape seed oil, maintaining 96% of the initial activity. Other oils were all light-susceptible and the activities decreased significantly. The peroxide values of all the oils increased by light exposure, but the extent of oxidation was still the least for grape seed oil. The addition of grape seed oil to perilla oil was very effective, in that the peroxide value was 5-times decreased by 1 : 5 composition of grape seed oil versus perilla oil. These results indicate that grape seed oil can be used as a good cooking oil or an additive for other oils.

  • PDF

A comparison of the characteristic properties between soybean (Glycine max [L.] Merrill) seeds with different seed coat colors

  • Oh, Sung-Dug;Yeo, Yunsoo;Lee, So-Young;Suh, Sang Jae;Moon, Jung Kyung;Park, Soo-Kwon;Park, Soo-Yun
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.971-980
    • /
    • 2019
  • We profiled the health-promoting bioactive components in nine types of soybean seeds with different seed coat colors (yellow, green, brown, and black) and investigated the effects of different extraction solvents (methanol, ethanol, and water) on their antioxidant activities. The carotenoid and anthocyanin compositions varied greatly by seed color, and the phenolic acids, total phenol, and total flavonoid contents differed by genotype. The carotenoid content was relatively higher in soybean seeds with green and black seed coats than in those with a yellow seed coat while lutein was the most plentiful. The anthocyanin content was considerably higher in the soybean seed with the black seed coat. The results of the DPPH assay showed strong antioxidative activities in the methanol- and water-extracts compared to the ethanol-extract, irrespective of the seed coat colors. Moreover, the soybean seeds with the black seed coat exhibited the highest antioxidant activity among the samples, regardless of the extraction solvent used. Eighteen bioactive compounds were subjected to data-mining processes including principal component analysis and hierarchical clustering analysis. Multivariate analyses showed that brown and black seeds were distinct from the yellow and green seeds in terms of the levels of carotenoids and anthocyanins, respectively. These results help our understanding of the compositional differences in the bioactive components among soybean seeds of various colors, providing valuable information for future breeding programs that seek to enhance the levels of compounds with health benefits.

Identification of the quantitative trait loci (QTL) for seed protein and oil content in soybean.

  • Jeong, Namhee;Park, Soo-Kwon;Ok, Hyun-Choong;Kim, Dool-Yi;Kim, Jae-Hyun;Choi, Man-Soo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • /
    • pp.148-148
    • /
    • 2017
  • Soybean is an important economical resource of protein and oil for human and animals. The genetic basis of seed protein and oil content has been separately characterized in soybean. However, the genetic relationship between seed protein and oil content remains to be elucidated. In this study, we used a combined analysis of phenotypic correlation and linkage mapping to dissect the relationship between seed protein and oil content. A $F_{10:11}$ RIL population containing 222 lines, derived from the cross between two Korean soybean cultivars Seadanbaek as female and Neulchan as male parent, were used in this experiment. Soybean seed analyzed were harvested in three different experimental environments. A genetic linkage map was constructed with 180K SoyaSNP Chip and QTLs of both traits were analyzed using the software QTL IciMapping. QTL analyses for seed protein and oil content were conducted by composite interval mapping across a genome wide genetic map. This study detected four major QTL for oil content located in chromosome 10, 13, 15 and 16 that explained 13.2-19.8% of the phenotypic variation. In addition, 3 major QTL for protein content were detected in chromosome 10, 11 and 16 that explained 40.8~53.2% of the phenotypic variation. A major QTLs was found to be associated with both seed protein and oil content. A major QTL were mapped to soybean chromosomes 16, which were designated qHPO16. These loci have not been previously reported. Our results reveal a signi cant genetic relationship between seed protein and oil fi content traits. The markers linked closely to these major QTLs may be used for selection of soybean varieties with improved seed protein and oil content.

  • PDF

Varietal Difference of Dry Matter Production and Photosynthetic of Middle and Lower Leaves in Soybean

  • Cho, Jin-Woong;Kim, Choong-Soo;So, Jung D.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.25-30
    • /
    • 2003
  • This research was conducted to compare the dry matter production and the yield productivity among nine soybean cultivars by measuring the photosynthetic ability of the middle and lower leaves at the flowering and the seed development stages. The leaf greenness(SPAD value) were ranged as 32-42 at the flowering stage. Also, They were ranged as 25-40 and 38-51 at the fifth leaf and the seventh leaf, respectively. The photosynthetic ability at the flowering and the seed development stage showed significant differences among soybean cultivars, and the photosynthetic ability at the seed development stage showed higher difference among cultivars than the flowering stage. The variation of the photosynthetic ability at the flowering and the seed development stage also was significant among cultivars. The light saturation point at the flowering stage was about 1500 $\mu$mol $m^{-2}$ $s^{-1}$ PAR, and the seed development stage was about 1000 $\mu$mol $m^{-2}$ $s^{-1}$ PAR. The photosynthesis showed the high negative correlation with the leaf area and the positive correlation with the leaf area ratio. Also, photosynthesis at seed development stage showed positive correlation with grain yields but there was not significant between photosynthesis and yields at flowering stage..