• Title, Summary, Keyword: robot software framework

Search Result 35, Processing Time 0.028 seconds

Toward the Personal Robot Software Framework

  • Kim, Hong-Ryeol;Kim, Dae-Won;Kim, Hong-Seok;Lee, Ho-Gil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.117.2-117
    • /
    • 2002
  • In this paper, a software framework is proposed for the personal robot located on home network. The proposed software framework is divided into four layers-a transparency layer, a behavior layer, a distributed task layer, and a mission scenario layer. The transparency layer consists of a virtual machine for platform transparency, and a communication broker for communication transparency among behavior modules. The communication architecture includes both server/client communication and publisher/subscriber communication. A mission scenario is assumed to be a composition of sequentially planned distributed tasks. In addition to the software framework, a new concept, personal robot design cent...

  • PDF

Toward the Personal Robot Software Framework (차세대 퍼스널 로봇 소프트웨어 프러임워크에 관한 연구)

  • Kim, Hong-Ryeol;Kim, Dae-Won;Kim, Hong-Seok;Lee, Ho-Gil
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.2410-2414
    • /
    • 2002
  • In this paper, a software framework is proposed for the personal robot located on home network. The proposed software framework is divided into four layers-a transparency layer, a behavior layer, a distributed task layer, and a mission scenario layer. The transparency layer consists of a virtual machine for platform transparency, and a communication broker for communication transparency among behavior modules. The communication architecture includes both server/client communication and publisher/subscriber communication. A mission scenario is assumed to be a composition of sequentially planned distributed tasks. In addition to the software framework, a new concept, personal robot design center platform as proposed in this paper with its implementation mechanisms. The personal robot design center is defined as a developing and a managing environment for high-level behavior modules, distributed tasks, and mission scenarios.

  • PDF

Knowledge Distributed Robot Control Framework

  • Chong, Nak-Young;Hongu, Hiroshi;Ohba, Kohtaro;Hirai, Shigeoki;Tanie, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.1071-1076
    • /
    • 2003
  • In this work, we propose a new framework of robot control for a variety of applications to our unstructured everyday environments. Programming robots can be a very time-consuming process and seems almost impossible for ordinary end users. To cope with this, this work is to provide a software framework for building robot application programs automatically, where we have robots learn how to accomplish a commanded task from the object. An integrated sensing and computing tag is embedded into every single object in the environment. In the robot controller, only the basic software libraries for low-level robot motion control are provided from the robot manufacturer. The main contributions of this work is to develop a server platform that we call Omniscient Server that generates the application programs and send them to the robot controller through the network. The object-related information from the object server merges into robot control software to generate a detailed application program based on the task commands from the human. We have built a test bed and demonstrated that a robot can perform a common household task within the proposed framework.

  • PDF

A Review and Outlook of Robotic Software Frameworks (로봇 소프트웨어 프레임워크 동향과 발전방향)

  • Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • Robotic software has been dramatically complicated as performing intelligent service tasks. These types of robots demand a very powerful software framework to make them easy. Robotic software framework means an integrated software environment that simplifies jobs of robotic software engineer by providing tools, reusable components, and runtime environments. Finally it reduces the project cost. There are lots of works related with them. Among them we focus on five frameworks that are MSRDS, ERSP, OROCOS, OpenRTM, and OPRoS. In terms of intelligent service robot, the study on robotic software frameworks is very important. And outlook on them is also very important in the sense of that the robotic software frameworks should be used to initiate service robot market.

Health Monitoring and Efficient Data Management Method for the Robot Software Components (로봇 소프트웨어 컴포넌트의 실행 모니터링/효율적인 데이터 관리방안)

  • Kim, Jong-Young;Yoon, Hee-Byung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1074-1081
    • /
    • 2011
  • As robotics systems are becoming more complex there is the need to promote component based robot development, where systems can be constructed as the composition and integration of reusable building block. One of the most important challenges facing component based robot development is safeguarding against software component failures and malfunctions. The health monitoring of the robot software is most fundamental factors not only to manage system at runtime but also to analysis information of software component in design phase of the robot application. And also as a lot of monitoring events are occurred during the execution of the robot software components, a simple data treatment and efficient memory management method is required. In this paper, we propose an efficient events monitoring and data management method by modeling robot software component and monitoring factors based on robot software framework. The monitoring factors, such as component execution runtime exception, Input/Output data, execution time, checkpoint-rollback are deduced and the detail monitoring events are defined. Furthermore, we define event record and monitor record pool suitable for robot software components and propose a efficient data management method. To verify the effectiveness and usefulness of the proposed approach, a monitoring module and user interface has been implemented using OPRoS robot software framework. The proposed monitoring module can be used as monitoring tool to analysis the software components in robot design phase and plugged into self-healing system to monitor the system health status at runtime in robot systems.

Modeling & Simulation Framework for the Efficient Development of a Rescue Robot (효율적인 구조로봇 개발을 위한 통합 M&S 프레임워크)

  • Park, Gyuhyun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.149-158
    • /
    • 2019
  • This paper introduces an integrated Modeling & Simulation framework for the efficient development of the rescue robot which rescues a wounded patients or soldiers and disposes a dangerous objects or explosive materials in the battlefields and disastrous environments. An integrated M&S(Modeling & Simulation) framework would have enabled us to perform the dynamic simulation program GAZEBO based Software-in-the-Loop Simulation(SILS) which is to replacing the robot platform hardware with a simulation software. An integrated M&S framework would help us to perform designing robot and performance validation of robot control results more efficiently. Furthermore, Tele-operation performance in the unstructured environments could be improved. We review a case study of applying an integrated M&S framework tool in validating performance of mobility stabilization control, one of the most important control strategy in the rescue robot.

Framework of a Cooperative Control Software for Heterogeneous Multiple Network Based Humanoid (이종 다수의 네트워크 기반 휴머노이드를 위한 협조제어 소프트웨어 프레임워크)

  • Lim, Heon-Young;Kang, Yeon-Sik;Lee, Joong-Jae;Kim, Jong-Won;You, Bum-Jae
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.3
    • /
    • pp.226-236
    • /
    • 2008
  • In this paper, control software architecture is designed to enable a heterogeneous multiple humanoid robot demonstration executing tasks cooperating with each other. In the heterogeneous humanoid robot team, one large humanoid robot and two small humanoid robots are included. For the efficient and reliable information sharing between many software components for humanoid control, sensing and planning, CORBA based software framework is applied. The humanoid tasks are given in terms of finite state diagram based human-robot interface, which is interpreted into the XML based languages defining the details of the humanoid mission. A state transition is triggered based on the event which is described in terms of conditions on the sensor measurements such as robot locations and the external vision system. In the demonstration of the heterogeneous humanoid team, the task of multiple humanoid cleaning the table is given to the humanoid robots and successfully executed based on the given state diagram.

  • PDF

A Study of Robot Curriculum to consider Conceptual Understanding and Learning Activities for Elementary School (개념이해와 학습활동을 고려한 초등학교 로봇 교육과정 모델 개발에 관한 연구)

  • Kim, Chul
    • Journal of The Korean Association of Information Education
    • /
    • v.20 no.6
    • /
    • pp.645-654
    • /
    • 2016
  • As the 4th industrial revolution has progressed in recent years, the importance of robot education in elementary school education is increasing. In this paper, I suggested robot education framework to consider conceptual understanding and learning activities based on the 2014, 2015 KAIE software education standard curriculum for elementary school. The framework is reconstructed the 7 stages, In order to generalize the standardized model of the software curriculum, the achievement criteria should be prepared according to the content system of the curriculum considering the conceptual understanding and learning activities proposed in this paper, and if the educational contents are developed and utilized, it is expected to contribute to the activation of robot education in addition to elementary school software education.

A Framework for Product Development including HW and SW Components (하드웨어와 소프트웨어가 포함된 제품개발을 위한 프레임워크)

  • Do Nam-Cheol;Chae Gyeong-Seok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • /
    • pp.1329-1333
    • /
    • 2006
  • This paper proposes a framework for product development including hardware and software components. The framework provides separation of the hardware dependent software, an integrated product development process, and integration of software components with product configurations and product structures. In order to separates the hardware dependent software, the framework considers product configuration modules and engineering changes of associated hardware and software components. The proposed product development process integrates development of the hardware dependent software into the existing product development process. In order to integrates the hardware dependent software with product configurations and product structures, the framework represents software components by existing product data models in Product Data Management (PDM). The framework is applied to development of a robot system including hardware and software components in order to show its effectiveness.

  • PDF

Design of Layered Software Architecture Based on ROS That Reflects the Requirements of Underwater Robot Software System (수중로봇 소프트웨어 시스템의 요구사항을 반영한 ROS 기반의 계층화된 소프트웨어 아키텍처의 설계)

  • Lee, Jung-Woo;Choi, Young-Ho;Lee, Jong-Deuk;Yun, Sung-Jo;Suh, Jin-Ho
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.303-310
    • /
    • 2017
  • Underwater robots operating in constrained underwater environment have requirements for software systems. Firstly, it is necessary to provide reusable common software components for hardware interface of sensors and actuators that are frequently used in underwater robots. Secondly, it is required to support distributed execution environment on multiple embedded controllers. Thirdly, it is need to implement a monitoring system capable of high-speed and large-data transmission for underwater robots operating in an environment where it is difficult to check the robot status. For these requirements, we have designed the layered architecture pattern and applied several design patterns to enhance the reusability and the maintainability of software components, In addition, we overlaid the broker architecture pattern to support distributed execution environments. Finally, we implemented the underwater robot software system using ROS framework based on the software architecture design. In order to evaluate the performance of the implemented software system, we performed an experiment to measure the response time between components and the transmission rate of the monitoring data, and obtained the results satisfying the required performance.