• Title, Summary, Keyword: rice bran oil

Search Result 152, Processing Time 0.049 seconds

A Study on Characteristics of Exhaust Emissions in a Diesel Engine with Improved Rice Bran Oils as a Fuel (디젤기관에 있어서 개선 미강유 연료의 배기 배출물 특성에 관한 연구)

  • 배명환;하정호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.12-23
    • /
    • 2004
  • The effects of improved rice bran oil on the characteristics of exhaust emissions have been experimentally examined by a single cylinder, four cycle, direct injection, water-cooled agricul-tural diesel engine operating at several loads and speeds. The experiments are conducted with light oil, rice bran oil, and improved rice bran oil as a fuel. The fuel injection timing is fixed to 22$^{\circ}$ BTDC regardless of fuel types, engine loads and speeds. To reduce the viscosity of rice bran oil, it is used with the methods of heating, methyl ester and ultrasonic system in a highly viscous rice bran oil. In this study, it is found that the brake specific fuel consumption rate of light oil is the lowest and that of improved rice bran oils is lower than that of pure rice bran oil, and NO$_{x}$ emissions of light oil are the lowest and those of pure rice bran oil are the high- est, while soot emissions of light oil are the highest and those of pure and improved rice bran oils are lower than that of light oil. However these results are not amply satisfied with the emissions regulation limit using the pure and improved rice bran oil as fuels in diesel engines.s.

Exhaust Emissions Characteristics of an Agricultural Diesel Engine with Improved Rice Bran Oil Fuels (개선 미강유 연소에 의한 농용 디젤기관의 배기 배출물 특성)

  • 배명환;하정호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • /
    • pp.55-60
    • /
    • 2000
  • The effects of improved rice bran oil on the characteristics of exhaust emissions have been experimentally examined by a single cylinder, four cycle, direct injection, water-cooled and agricultural diesel engine operating at several loads and speeds. The experiments are conducted with light oil rice bran oil, and improved rice bran oil as a fuel. The fuel injection timing is fixed to 22$^{\circ}$BTDC regardless of fuel type, engine loads and speeds. To reduce the viscosity of rice bran oil, it is used with the methods of heating, methyl ester and ultrasonic system in a highly viscous rice bran oil. In this study, it is found that the brake specific fuel consumption rate of light oil is the lowest and that of improved rice bran oil is lower than that of pure rice bran oil, and NOx emissions of light oil are the lowest and those of pure rice bran oil are the highest, but soot emissions of light oil are the highest. However these results are not amply satisfied with the emissions regulation limit using the pure and improved rice bran oil as a fuel in diesel engines.

  • PDF

Removal of Pesticide Residues in Rice Bran Oil by Refining Process (미강유의 정제과정중 잔류농약의 감소)

  • 이철원;신효선
    • Journal of Food Hygiene and Safety
    • /
    • v.11 no.2
    • /
    • pp.89-97
    • /
    • 1996
  • This study was carried out to determine the pesticide residues in rice bran, crude rice bran oil and the oil of various stages of refining process. Each samples were analyzed for 41 pesticide residues by multiclass multiresidue methods with GC-ECD, NPD and identified by GC-MSD. Rice bran were detected cypermethrin, diazinon, dichlofluanid, and its level were ranged from 0.01~0.122 ppm. Crude rice bran oil were detected cypermethrin, diazinon, dichlofluanid, dimethoate, etrimfos, flucythrinate, and its level were ranged from 0.015~0.654 ppm Crude rice bran oil has the higher level of pesticide residues and more varieties of pesticides than rice bran. But pesticide residues in the crude rice bran oil was found to be almost removed then pigment was decolorized by absorption using active carbon and clealy removed by thermolysis for deodorization.

  • PDF

A Study on the Performance and Exhaust Emissions of Agricultural Diesel Engines by Use of Rice Bran Oil as a Fuel (미강유 연료에 의한 전용 디젤기관의 성능 및 비기 배출물에 관한 연구)

  • 하정호
    • Journal of the Korean Society of Marine Engineering
    • /
    • v.22 no.6
    • /
    • pp.816-826
    • /
    • 1998
  • The effects of rice bran oil on the characteristics of performance and exhaust emissions have been experimentally examined by a single cylinder four cycle direct injection water-cooled and agricultural diesel engine operating at several loads and speeds. The experiments are conducted with light oil blends of rice bran with light oil and rice bran oil as a fuel. The fuel injection timing if fixed to $22^{\circ}$ BTDC regardless of fuel type engine loads and speeds. Any oxygen is not included in light oil while the oxygen contents of 10.7% are included in rice bran oil. The lower calorific value of rice bran oil is less than light oil and the viscosity is very high compared with light oil. In pre-sent study it is found that these major differences of chemical and physical properties control the combustion parameters that affect the performance and exhaust emissions of diesel engines using a rice bran oil as fuels.

  • PDF

Effects of Oleic Acid on the Autoxidation of Rice Bran Oil (미강유의 자동산화에 미치는 Oleic Acid의 첨가 효과)

  • 이성호;신영순
    • The Korean Journal of Food And Nutrition
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 1993
  • In the present study, an attempt was made to investigate the effect of oleic acid on the autoxidation of the commercial rice bran oil. Rice bran oil samples with oleic acid at 0.1, 0.3 and 0.5% level were kept at 45 $\pm$ 0.3$^{\circ}C$ for 40 days. The rate of autoxidation of each samples was estimated regularly on the basis of the changes of peroxide value, acid value, anisidine value and the fatty acid composition. The per oxide, acid and anisidine values of the rice bran oil with the oleic acid increased as compared with that of the rice bran oil without the oleic acid during the autoxidation. The induction period of the rice bran oil without the oleic acid, control was 19.8 days, while those of the rice bran oil with oleic acid at 0.1, 0.3 and 0.5% levels were 18.3 days, 16.8 days, and 15.5 days, respectively. In conclusion, it seemed that oleic acid acted as weak prooxidant when added at 0.1, 0.3 and 0.5% levels to the commercial rice bran oil.

  • PDF

A Study on the Feasibility Test & the Performance Experiment of Small Type Diesel Engine using the an Rice-bran oil (미강유적용 소형 디젤기관의 타당성 검증 및 성능실험에 관한 연구)

  • Yu, B.G.;Cha, K.O.;La, W.J.;Chung, J.D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.3
    • /
    • pp.44-50
    • /
    • 1997
  • Bio-diesel oil is a great possibility to solve the pollution problem caused by the exhaust gas from diesel engine vehicles. Recently the use of bio-oils in disel engines has received considerable attention to the forseeable depletion of world oil supplies. So, Bio-diesel oil has been attracted with attentions as an alternative and clean energy source. The objective of this paper is to experimentally investigate the characteristic of performance using light oil, rice-bran oil, heated rice-bran oil, rice-bran oil treated with ultrasonic energy. We included rice-bran oil and applied ultrasonic energy to highly viscous bio-oils. These methods seems to have never been tried yet. The final data may be able to be applicated for the design of the diesel engine using an alternative fuel.

  • PDF

Blending Effect of Palm Oil on Physicochemical Properties of Rice Bran Oil

  • Yoon, Suk-Hoo;Kim, Sun-Ki;Teah, Yau-Kun;Kim, Kil-Hwan;Kwon, Tai-Wan
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.329-333
    • /
    • 1986
  • Rice bran ell was blended with double fractionated palm olein (DF palm olein) to examine the cooking performance of blended oil. A blended oil made with 80% or higher rice bran oil and 20% or less DF palm olein passed the cold test, and had a cloud point of $-3^{\circ}C$. Blending of DF palm olein to rice bran oil lowered the smoke point, refractive index, and absorbancies at 232 and 268 nm of rice bran oil. Dielectric constant of oils was not affected by blending during heating. Blending of DF palm olein , however, increased the acids formation in rice bran oil, whereas it retarded polymer formation. The results of the analytical methods used in this study except dielectric constant measurement showed significant difference among the blended oils depending on the blending ratios.

  • PDF

A Study on Characteristics of Rice Bran Oil as an Alternative Fuel in Diesel Engine(II) (디젤기관의 대체연료로서 미장유의 특성 연구(II))

  • 최승훈;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.8-17
    • /
    • 2002
  • In this study, it was tried to analyze not only total hydrocarbon but individual hydrocarbon components from C$_1$to C$\sub$6/ in exhaust gas using gas chromatography to seek the reason fur remarkable differences of smoke emission of diesel fuel, esterfied rice bran oil and blended fuel(esterfied rice bran oil 20vo1-% + diesel fuel 80vo1-%). Individual hydrocarbons(C$_1$ ∼C$\sub$6/) as well as total hydrocarbon of esterfied rice bran oil is reduced remarkably compared with diesel fuel. Although smoke emission of esterfied rice bran oil reduced remarkably compared with commercial diesel fuel, NOx emission of esterfied rice bran oil and blended fuel was increased slightly at high loads and speeds. And, it was tried to reduced NOx emission of them by exhaust gas recirculation(EGR) method. Simultaneous reduction of smoke and NOx emission was achieved with the combination of esterfied rice bran oil and EGR method in consequence.

Effects of Stearic Acid on the Autoxidation of Rice Bran Oil (미강유의 자동산화에 미치는 Stearic Acid의 첨가 효과)

  • 이성호;신영순
    • The Korean Journal of Food And Nutrition
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 1991
  • In the present study, an attempt was made to Investigate the effect of stearic acid on the autoxidation of the commercial rice bran oil, Rice bran oil samples with stearic acid at 0.1, 0.3 and 0.5oh level were kept at 45$\pm$0.3$^{\circ}C$ for 40 days. The rate of autoxidation of each samples was estimated regularly on the basis of the changes of peroxide value, acid value, anisidine value and the fatty acid composition. The results were as follows : The peroxide, acid and anisidine values of the rice bran oil with the stearic acid at 0.1, 0.3 and 0.591 levels during the autoxidation Increased as compared with that of the rice bran oil without the stearic acid. The induction period of the rice bran oil without the stearic acid, control was 19.0days, while those of the bran oil with stearic acid at 0.1, 0.3 and 0.5% levels varied 19.0 days, 17.7days and 14.2 days, respectively. In conclusion, it seemed that stearic acid acted as weak prooxidant when added at 0.1, 0.3 and 0.5% levels to the commercial rice bran oil. The prooxidant activity of the stearic acid appeared to depend on the oxidative mechanism and their concentration.

  • PDF

Performance and Emissions Characteristics of a Diesel Engine with Some Bio-Oil Fuels

  • La, Woo-Jung;Ju, Eun-Sun;Kim, Byong-Hwa;Cho, Ki-Hyun;Kim, Jong-Chun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • /
    • pp.359-368
    • /
    • 1996
  • The performance and exhaust emissions of a diesel engine using light oil, heated, rice-bran oil , heated rice-bran oil treated with ultrasonic wave, used frying oil, use frying oil treated with ultrasonic wave, used frying oil, used frying oil treated with ultrasonic wave, methyl esters of rice-bran oil and used frying oil have been compared. All the fuels performed satisfactorily in a precombustion chamber-type diesel engine without injection pump recalibration or any engine modification at the range of engine speed from 1600 to 2800 rpm at its full load during a sort period , with the rice-bran oil and rice-bran oil treated with ultrasonic wave requiring somewhat preheating when ambient temperature was below 15$^{\circ}C$. General performance and emission characteristics of light oil and bio-oils were comparable , with the bio-oil based fuels giving very low SO$_2$ and lower smoke readings.

  • PDF