• Title/Summary/Keyword: retrogradation

Search Result 272, Processing Time 0.063 seconds

A New Sweetpotato Cultivar for Use of Bioethanol 'Daeyumi' (바이오에탄올용 고구마 신품종 '대유미')

  • Lee, Joon-Seol;Ahn, Young-Sup;Chung, Mi-Nam;Kim, Hag-Sin;Jeong, Kwang-Ho;Bang, Jin-Ki;Song, Yeon-Sang;Shim, Hyeong-Kwon;Han, Seon-Kyeong;Suh, Sae-Jung
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.674-678
    • /
    • 2010
  • A new sweetpotato variety, 'Daeyumi', was developed by Bioenergy Crop Research Center, National Institute of Crop Science (NICS), RDA in 2008. This variety was obtained from the cross between 'Jinhongmi' and 'Xusju 18' in 2000. The seedling and line selections were performed from 2001 to 2003, preliminary and advanced yield trials were carried out from 2004 to 2005, and the regional yield trials were conducted at six locations from 2006 to 2008. 'Daeyumi' has cordate leaf, green vine and petiole, elliptic storage root, red skin and yellow flesh color of storage root. This variety is also resistant to Fusarium wilt and nematode. The starch value was 25.9%, ethanol yield was 418 L/Ton, which was 7% higher than that of 'Yulmi' variety, and the total sugar content was 2.47 g/100g, dry weight. 'Daeyumi's initial temperature of starch gelatinization was lower, 76.2$^{\circ}C$, and the retrogradation process was earlier than 'Yulmi'. The average yield of storage root was 27.8 ton/ha in the regional yield trials, which was 36% higher than that of 'Yulmi' variety. Number of storage roots over 50 gram per plant was 3.0, and the average weight of one storage root was 152 gram. This variety can be used for the production of bioethanol and starch processing.

Effects of Semolina on Quality Characteristics of the Rice Noddles (세몰리나 첨가가 쌀국수의 품질특성에 미치는 영향)

  • Kim, Byong Ki;Park, Jung Eun;Zu, Genuine
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2011
  • Durum wheat semolina was added into wet-milled rice flour in order to improve chewy texture, firm bite ("al dente"), and resistance to overcooking of the ordinary rice noodles. Wet noodles were prepared by mixing 0 (control), 5, 10, 15, and 20% (w/w) of semolina per semolina and rice flour mixtures. Vital gluten (4%, w/w) and salt (2%, w/w) were added to form the pliable strands of wet noodles and final moisture contents of the raw mixtures were equalized at 45%. Pasting properties of the suspended flour mixtures as measured by the Rapid Visco Analyser (RVA) showed slight increases (up to $1.2^{\circ}C)$ in pasting temperatures along with the considerable decreases in peak viscosities as semolina increased at over 15%. Reduced shear thinning and retrogradation of the starch solution that leads to hardening of the cooked noodles were indicated by lowered breakdown viscosities and gaps between finaland setback viscosities from the RVA viscogram as semolina increased at over 10%. Reduced water uptake and turbidity increases of the cooking water as caused by the soluble starches from the noodle were also noted as the content of semolina increased. More or less significant (p<0.05) decreases in colorimetric L (lightness) value of the raw- and cooked noodles were observed as semolina increased while a- (redness) and b (yellowness) values were rather increased at the same moment. Textural properties of the cooked noodles such as hardness, springiness, cohesiveness, gumminess, and chewiness from TPA tests were significantly (p<0.05) influenced by added semolina, even at 5%-levels or more. It can be concluded that addition of semolina into rice flour could provide easy handling of the wet noodles without distortion during transportation, integrity and firm bite of the cooked noodles, and less loss of starch to the cooking water in comparison with the ordinary rice noodle. It was finally suggested that optimum level of the semolina in the product was approximately 10% for the quality wet rice noodle products.