• Title, Summary, Keyword: response surface methodology

Search Result 1,287, Processing Time 0.073 seconds

LDM Design for Reduction of Mover Mass Using RSM(Response Surface Methodology) (RSM(Response Surface Methodology)를 적용한 선형직류전동기(LDM)의 가동자 중량 저감 최적화 설계)

  • Nam, Hyuk;Kim, Young-Kyoun;Chang, Ki-Chan;Hong, Jung-Pyo;Park, Jae-Wan
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.964-966
    • /
    • 2002
  • This paper presents a magnet circuit design procedure to reduce mover mass of the moving coil type linear direct motor (LDM). The procedure of optimization is based on the response surface methodology (RSM) and Sequential Quadratic Problem (SQP). This procedure of optimization is verified by the comparison of the result of the initial design between the result of the optimum design.

  • PDF

Determination of Fleet Size of Equipment in Buffer Yard of an Automated Container Terminal by using a Response Surface Methodology (표면반응법을 이용한 자동화 컨테이너 터미널의 버퍼 장치장에서의 장비 규모 결정)

  • 배종욱;양창호;김갑환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • /
    • pp.121-129
    • /
    • 2000
  • In this paper, we discuss how to operate a buffer yard in an automated container terminal, which will be used for resolving the difficulties to which the interaction between external manned trucks and internal unmanned equipment led. The determination of fleet size of material handling equipment is an important issue in designing of buffer yard in automated container terminals. This research also addresses the issue of determining buffer capacities through simulation. By using response surface methodology (RSM) for efficient experimentation, the optimal combination of design parameters under applicable operational strategies is obtained.

  • PDF

A study of cut-off tool life equation by response surface methodology (應答表面法에 의한 切斷바이트의 工具壽命式에 關한 硏究)

  • 김원익;이충경;송지복;최만성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.54-60
    • /
    • 1988
  • This paper presents a study of tool-life equation on cut-off test by the statistical approach, referred to as response surface methodology instead of a conventional one-variable at a time method. It is the merit of response surface methodology that the test time is reduced to minimize the size and accurate analysis can be done. The reliability of such an equation can also be estimated. Two independent variables, cutting speed and feed rate, were investigated. A first order modeling equation is presented in this project. The results of this study are as follows that tool-life in cut-off operation is affected by cutting speed more than feed, and first order tool-life predicting equations are in good agreement with experimental results.

  • PDF

Response Surface Methodology in Development of Oyster Hydrolysate

  • Cha, Yong-Jun;Kim, Eun-Jeong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.427-433
    • /
    • 1995
  • The optimal condition for hydrolysis of oyster was evaluated with proteases using response surface methodology(RSM). Among 11 commerical proteases, APLTM 440 was selected as the suitable protease for producing oyster hydrolysate on the basis of cost per unit enzyme activity. The effect of autolysis on degree of hydrolysis in oyster was negligible comparing to that of APL 440 protease treatment. From RSM and ridge analysis, the conditions favoring the highest degree of hydrolysis were pH 9.95, 61.1$^{\circ}C$, 2.64 hr reaction time, 49.2% substrate, and 0.35% enzyme/substrate ratio. Oyster hydrolysate prepared under optimal conditions shwoed virtually 51.98% of hydrolysis.

  • PDF

Optimum Design on Reduction of Torque Ripple for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 최적설계)

  • Park Seong-June;Lee Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.69-75
    • /
    • 2006
  • This paper deals with the optimum design solution on reduction of torque ripple for a Synchronous Reluctance Motor with concentrated winding using response surface methodology. The coupled Finite Elements Analysis (FEA) & Preisach model have been used to evaluate the nonlinear solution. Comparisons are given with characteristics of a SynRM according to the stator winding, slot number, open width of slot, slot depth, teeth width variation in concentrated winding SynRM, respectively. This paper presents an optimization procedure using Response Surface Methodology (RSM) to determine design parameters for reducing torque ripple. RSM has been achieved to use the experimental design method in combination with finite Element Method (FEM) and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.

Single Phase Switched Reluctance Motor Optimum Design Using Response Surface Methodology and Finite Element Method (반응표면법과 유한요소법을 이용한 단상 스위치드 릴럭턴스 전동기의 최적 설계)

  • Lim, Seung-Bin;Choi, Jae-Hak;Park, Jae-Bum;Son, Yeoung-Gyu;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.12
    • /
    • pp.596-607
    • /
    • 2006
  • This paper presents Single Phase Switched Reluctance Motor (SPSRM) optimum design for vacuum cleaners using Response Surface Methodology (RSM) to determine geometric parameters, and the 2-D Finite Element Method (FEM) has been coupled with the circuit equations of the driving converter. Additionally, an optimum process for SPSRM has been proposed and peformed with geometric and electric parameters thereby influencing the inductance variation and effective torque generation as design variables. SPSRM performances have also been analyzed to determine an optimal design model for maximized efficiency at high power factor. In order to confirm the propriety of the Finite Element Method and motor performance calculation, simulation waveform and experiment waveform for motor voltage and current were compared.

Optimization of Jelly with Addition of Morinda Citrifolia(Noni) by Response Surface Methodology (반응표면분석법을 이용한 노니젤리 제조의 최적화)

  • Park Sang-Hyun;Joo Na-Mi
    • Korean journal of food and cookery science
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2006
  • To determine the optimal mixing conditions of Noni jelly, samples were prepared with various compounding ratios of Noni juice(120, 160, 200, 240 and 280 g), gelatin(12, 16, 20, 24 and 28 g) and sucrose(80, 100, 120, 140 and 160 g) using a central composite design. Physical and sensory evaluations were performed and the results analyzed using response surface methodology. The optimum mixing rate satisfying sensory items was Noni juice 192 g, gelatin 18.25 g and sucrose 135 g.

Response surface methodology for the evaluation of guanidine hydrochloride partitioning in polymer-salt aqueous two-phase system

  • Pirdashti, Mohsen;Movagharnejad, Kamyar;Rostami, Abbas Ali;Shahrokhi, Behnia
    • The Korean Journal of Chemical Engineering
    • /
    • v.34 no.7
    • /
    • pp.2033-2042
    • /
    • 2017
  • The current study employed response surface methodology (RSM) with a face-centered central composite design (CCD) to indicate the essential variables on the partition coefficient of guanidine hydrochloride (GuHCl) in the poly (ethylene glycol) (PEG)-phosphate aqueous two-phase system (ATPS). To evaluate the partition coefficients of GuHCl in the mentioned ATPS, the pH (7.0, 8.5 and 10.0), GuHCl concentration (1.0, 3.5 and 6.0% w/w), PEG molecular weight (2,000, 4,000 and $6,000gmol^{-1}$) and PEG/potassium phosphate concentrations ratio were selected as independent variables. A quadratic model is suggested to find the impact of these variables. The suggested model has a strong harmony with the experimental data. The results of the model display that the GuHCl concentration and weight percent of the salt in feed have a large and small influence on the GuHCl partitioning.

Optimization of Conditions for the Maximum Bacteriocin Production of Enterococcus faecium DB1 Using Response Surface Methodology

  • Choi, Hye-Young;Kim, Joon-Soo;Kim, Wang-June
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.176-182
    • /
    • 2011
  • The bacteriocin-producing lactic acid bacteria Enterococcus faecium DB1 was isolated from Korean traditional gajami sikhae. Culture conditions were optimized by response surface methodology (RSM) to maximize bacteriocin DB1 production. E. faecium DB1 displayed the highest bacteriocin activity when grown in modified MRS medium containing sucrose, rather than glucose, as a carbon source. The effects of temperature, initial pH, and sucrose concentration were tested to determine the optimum conditions for maximum bacteriocin production by E. faecium DB1. A central composite design was used to control the three variables in the experiment. RSM revealed that the optimum values for bacteriocin production were 27.66 g/L sucrose, temperature of $34.37^{\circ}C$, and an initial pH of 6.54. A 2.08-fold increase in bacteriocin production was obtained with sucrose-containing MRS medium compared to production in standard MRS medium.

Approximate Optimization of Suspension Mechanism for Outdoor Security Robot using Response Surface Methodology (반응표면법을 이용한 고속 주행용 실외 경비로봇의 현가장치 근사 최적화)

  • Koh, Doo-Yeol;Jeong, Hae-Kwan;Woo, Chun-Kyu;Kim, Soo-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.135-142
    • /
    • 2010
  • Security robot has gradually developed and deployed in order to protect civilian's lives as well as fortune and subjugate the shortcomings of CCTV which lacks of mobility. We have developed a security robot for outdoor environment and the main purpose of the driving mechanism is to overcome the bumps or projections with high speed. The robot platform consists of 4 omnidirectional wheel-based driving mechanisms and suspension for each driving mechanism. In this paper, principal suspension parameters of outdoor security robot for overcoming obstacles with stability are studied and approximately optimized using Response Surface Methodology (RSM) since it is difficult to find the exact relationship between suspension parameters and the shock, which is significantly associated with stability of the robot, at the robot platform. Simulation using ADAMS is conducted for assessing the feasibility of optimized design parameters.