• 제목/요약/키워드: response surface methodology

검색결과 1,233건 처리시간 0.585초

반응표면분석법을 이용한 횡자속 선형전동기의 형상최적설계 (Optimal Geometric Design of Transverse Flux Linear Motor Using Response Surface Methodology)

  • 홍도관;우병철;강도현
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • v.55 no.10
    • /
    • pp.498-504
    • /
    • 2006
  • Thrust force of linear motor is one of the important factor to specify motor performance. In this study, we optimized maximizing the thrust force of TFLM(Transverse Flux Linear Motor) using Response Surface Methodology by the table of orthogonal way. The Response Surface Methodology was well adapted to make the analytical model of the maximum thrust force and enable the objective function to be easily created and a great deal of the time In computation to be saved. Therefore, it is expected that the proposed optimization procedure using the Response Surface Methodology can be easily utilized to solve the optimization problem of electric machine.

와이어 펄스전해가공에서 반응표면분석법을 응용한 미세박판의 홀 가공 최적 조건에 관한 연구 (A Study on the Optimal Conditions of Hole Machining of Microplate by Application of Response Surface Methodology in Wire-Pulse Electrochemical Machining)

  • 송우재;이은상
    • 한국기계가공학회지
    • /
    • v.16 no.5
    • /
    • pp.141-149
    • /
    • 2017
  • Due to the inaccuracy of micro-machining, various special processing methods have been investigated recently. Among them, pulse electrochemical machining is a promising machining method with the advantage of no residual stress and thermal deformation. Because the cross section of the wire electrode used in this study is circular, wire-pulse electrochemical machining is suitable for micro-hole machining. By applying the response surface methodology, the experimental plan was made of three factors and three levels: machining time, duty factor, and voltage. The regression equation was obtained through experiments. Then, by referring to the main effect diagram, we fixed the duty factor and machining time with little relevance, and solved the equation for the target 900 microns to obtain the voltage value. The results obtained from the response surface methodology were approximately those of the target value when the actual experiment was carried out. Therefore, it is concluded that the optimal conditions for hole processing can be obtained by the response surface methodology.

OPTIMIZATION OF WELDING PARAMETERS FOR RESISTANCE SPOT WELDING OF TRIP STEEL USING RESPONSE SURFACE METHODOLOGY

  • Park, Hyunsung;Kim, Taehyung;Sehun Rhee
    • 대한용접접합학회:학술대회논문집
    • /
    • /
    • pp.366-371
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

Optimization of Welding Parameters for Resistance Spot Welding of Trip Steel Using Response Surface Methodology

  • Park, H.;Kim, T.;S. Rhee
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.47-50
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

반응표면법에 의한 연약지반 차량 거동의 통계적 분석 및 예측 (Statistical Analysis and Prediction for Behaviors of Tracked Vehicle Traveling on Soft Soil Using Response Surface Methodology)

  • 이태희;정재준;홍섭;김형우;최종수
    • 한국해양공학회지
    • /
    • v.20 no.3
    • /
    • pp.54-60
    • /
    • 2006
  • For optimal design of a deep-sea ocean mining collector system, based on self-propelled mining vehicle, it is imperative to develop and validate the dynamic model of a tracked vehicle traveling on soft deep seabed. The purpose of this paper is to evaluate the fidelity of the dynamic simulation model by means of response surface methodology. Various statistical techniques related to response surface methodology, such as outlier analysis, detection of interaction effect, analysis of variance, inference of the significance of design variables, and global sensitivity analysis, are examined. To obtain a plausible response surface model, maximum entropy sampling is adopted. From statistical analysis and prediction for dynamic responses of the tracked vehicle, conclusions will be drawn about the accuracy of the dynamic model and the performance of the response surface model.

저항 점 용접에서 반응표면분석법을 이용한 고장력 TRIP강의 최적 용접 조건 설정에 관한 연구 (Optimization of Welding Parameters for Resistance Spot Welding of TRIP Steel using Response Surface Methodology)

  • 박현성;김태형;이세헌
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.76-81
    • /
    • 2003
  • Due to the environmental problem, automotive companies are trying to reduce the weight of car body. Therefore, WP(Transformation Induced Plasticity) steels, which are hish strength and ductility have been developed. The application of TRIP steel to the members has been reported to increase the energy absorption capability. Welding process is a complex process; therefore deciding the optimal welding conditions is an effective method on the basis of the experimental data. However, using a trial-and-error method from the beginning in such a wide area, in order to decide the optimal conditions requires too many numbers of experiments. To overcome these problems and to decide the optimal conditions, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are for the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The introduced method was applied to the resistance spot welding process of the TRIP steel and the welding parameters were optimized. (Received December 6, 2002)

RSM(Response Surface Methodology)를 적용한 선형직류전동기(LDM)의 가동자 중량 저감 최적화 설계 (LDM Design for Reduction of Mover Mass Using RSM(Response Surface Methodology))

  • 남혁;김영균;장기찬;홍정표;박재완
    • 대한전기학회:학술대회논문집
    • /
    • /
    • pp.964-966
    • /
    • 2002
  • This paper presents a magnet circuit design procedure to reduce mover mass of the moving coil type linear direct motor (LDM). The procedure of optimization is based on the response surface methodology (RSM) and Sequential Quadratic Problem (SQP). This procedure of optimization is verified by the comparison of the result of the initial design between the result of the optimum design.

  • PDF

산가수분해법과 반응표면분석법을 이용한 해조류 청각으로부터 레불린산의 생산 (Production of Levulinic Acid from Marine Algae Codium fragile Using Acid-Hydrolysis and Response Surface Methodology)

  • 정귀택;박돈희
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.341-346
    • /
    • 2011
  • This work is focused on the possibility of marine biomass Codium fragile as renewable resources for production of levulinic acid. In an effort to optimize the reaction conditions of levulinic acid production from Codium fragile, response surface methodology was applied. A total of 18 individual experiments were designed to investigate the effect of reaction temperature, catalyst amount, and reaction time. As a result, 4.26 g/L levulinic acid from Codium fragile was produced in the condition of $160.7^{\circ}C$ of reaction temperature, 3.9% of sulfuric acid, and 39.1 min of reaction time. This result will provide the useful information for chemical production from marine resource.