• Title, Summary, Keyword: response surface methodology

### Optimal Geometric Design of Transverse Flux Linear Motor Using Response Surface Methodology (반응표면분석법을 이용한 횡자속 선형전동기의 형상최적설계)

• Hong, Do-Kwan;Woo, Byung-Chul;Kang, Do-Hyun
• The Transactions of the Korean Institute of Electrical Engineers B
• /
• v.55 no.10
• /
• pp.498-504
• /
• 2006
• Thrust force of linear motor is one of the important factor to specify motor performance. In this study, we optimized maximizing the thrust force of TFLM(Transverse Flux Linear Motor) using Response Surface Methodology by the table of orthogonal way. The Response Surface Methodology was well adapted to make the analytical model of the maximum thrust force and enable the objective function to be easily created and a great deal of the time In computation to be saved. Therefore, it is expected that the proposed optimization procedure using the Response Surface Methodology can be easily utilized to solve the optimization problem of electric machine.

### OPTIMIZATION OF WELDING PARAMETERS FOR RESISTANCE SPOT WELDING OF TRIP STEEL USING RESPONSE SURFACE METHODOLOGY

• Park, Hyunsung;Kim, Taehyung;Sehun Rhee
• Proceedings of the KWS Conference
• /
• /
• pp.366-371
• /
• 2002
• Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

### Response Surface Methodology Using a Fullest Balanced Model: A Re-Analysis of a Dataset in the Korean Journal for Food Science of Animal Resources

• Rheem, Sungsue;Rheem, Insoo;Oh, Sejong
• Food Science of Animal Resources
• /
• v.37 no.1
• /
• pp.139-146
• /
• 2017
• Response surface methodology (RSM) is a useful set of statistical techniques for modeling and optimizing responses in research studies of food science. In the analysis of response surface data, a second-order polynomial regression model is usually used. However, sometimes we encounter situations where the fit of the second-order model is poor. If the model fitted to the data has a poor fit including a lack of fit, the modeling and optimization results might not be accurate. In such a case, using a fullest balanced model, which has no lack of fit, can fix such problem, enhancing the accuracy of the response surface modeling and optimization. This article presents how to develop and use such a model for the better modeling and optimizing of the response through an illustrative re-analysis of a dataset in Park et al. (2014) published in the Korean Journal for Food Science of Animal Resources.

### Response Surface Methodology based on the D-optimal Design for Cell Gap Characteristic for Flexible Liquid Crystal Display (D-optimal Design을 이용한 Flexible 액정 디스플레이용 셀 갭 특성에 대한 반응 표면 분석)

• Ko, Young-Don;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Yun, Il-Gu
• Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
• /
• /
• pp.510-513
• /
• 2004
• This paper represents the response surface model for the cell gap on the flexible liquid crystal display (LCD) process. Using response surface methodology (RSM). D-optimal design is carried out to build the design space and the cell gap is characterized by the quadratic model. The statistical analysis is used to verify the response surface model. This modeling technique can predict the characteristics of the desired response, cell gap, varying with process conditions.

### Statistical Analysis and Prediction for Behaviors of Tracked Vehicle Traveling on Soft Soil Using Response Surface Methodology (반응표면법에 의한 연약지반 차량 거동의 통계적 분석 및 예측)

• Lee Tae-Hee;Jung Jae-Jun;Hong Sup;Km Hyung-Woo;Choi Jong-Su
• Journal of Ocean Engineering and Technology
• /
• v.20 no.3
• /
• pp.54-60
• /
• 2006
• For optimal design of a deep-sea ocean mining collector system, based on self-propelled mining vehicle, it is imperative to develop and validate the dynamic model of a tracked vehicle traveling on soft deep seabed. The purpose of this paper is to evaluate the fidelity of the dynamic simulation model by means of response surface methodology. Various statistical techniques related to response surface methodology, such as outlier analysis, detection of interaction effect, analysis of variance, inference of the significance of design variables, and global sensitivity analysis, are examined. To obtain a plausible response surface model, maximum entropy sampling is adopted. From statistical analysis and prediction for dynamic responses of the tracked vehicle, conclusions will be drawn about the accuracy of the dynamic model and the performance of the response surface model.

### A Study on the Optimal Conditions of Hole Machining of Microplate by Application of Response Surface Methodology in Wire-Pulse Electrochemical Machining (와이어 펄스전해가공에서 반응표면분석법을 응용한 미세박판의 홀 가공 최적 조건에 관한 연구)

• Song, Woo-Jae;Lee, Eun-Sang
• Journal of the Korean Society of Manufacturing Process Engineers
• /
• v.16 no.5
• /
• pp.141-149
• /
• 2017
• Due to the inaccuracy of micro-machining, various special processing methods have been investigated recently. Among them, pulse electrochemical machining is a promising machining method with the advantage of no residual stress and thermal deformation. Because the cross section of the wire electrode used in this study is circular, wire-pulse electrochemical machining is suitable for micro-hole machining. By applying the response surface methodology, the experimental plan was made of three factors and three levels: machining time, duty factor, and voltage. The regression equation was obtained through experiments. Then, by referring to the main effect diagram, we fixed the duty factor and machining time with little relevance, and solved the equation for the target 900 microns to obtain the voltage value. The results obtained from the response surface methodology were approximately those of the target value when the actual experiment was carried out. Therefore, it is concluded that the optimal conditions for hole processing can be obtained by the response surface methodology.

### Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm

• Geomechanics and Engineering
• /
• v.15 no.4
• /
• pp.937-945
• /
• 2018
• A probabilistic study of a reinforced earth wall in a frictional soil using the surface response methodology (RSM) is presented. A deterministic model based on numerical simulations is used (Abdelouhab et al. 2011, 2012b) and the serviceability limit state (SLS) is considered in the analysis. The model computes the maximum horizontal displacement of the wall. The response surface methodology is utilized for the assessment of the Hasofer-Lind reliability index and is optimized by the use of a genetic algorithm. The soil friction angle and the unit weight are considered as random variables while studying the SLS. The assumption of non-normal distribution for the random variables has an important effect on the reliability index for the practical range of values of the wall horizontal displacement.

### Optimal Design of Multi-DOF Deflection Type PM Motor by Response Surface Methodology

• Li, Zheng;Zhang, Lu;Lun, Qingqing;Jin, Hongbo
• Journal of Electrical Engineering and Technology
• /
• v.10 no.3
• /
• pp.965-970
• /
• 2015
• This paper uses response surface methodology as the optimization method of torque of multi-DOF deflection type PM motor. Firstly, the application of Taguchi algorithm selects structural parameters affecting the motor torque largely which simplifies the optimization process greatly. Then, based on the central composite design (CCD), response surface equation numerical model is constructed by the finite element method. With the aid of experiment design and analysis software, the effects of the interaction among factors on the index are analyzed. The results show that the analytical method is efficient and reliable and the experimental results can be predicted by response surface functions.

### Optimization of Mixing Proportion of Press-forming Board by Response Surface Methodology (반응표면분석법을 이용한 가압성형 보드의 최적 배합비 산정)

• Lee, Jun-Cheol;Kim, Jin-Sung;Lee, Bo-kyeong;Choi, Hyeong-Gil
• Proceedings of the Korean Institute of Building Construction Conference
• /
• /
• pp.182-183
• /
• 2019
• In this study, the optimization of mixing proportion of press-forming board with blast furnace slag, pearlite and bottom ash was investigated using the response surface methodology. Ten Mixing proportions of specimens were designed by the response surface design, and then flexural failure load, moisture content and water absorption of specimens were measured. As a result of the reaction surface analysis based on the experimental results, it was possible to derive the optimal mixing proportion with the satisfaction of 93%.

### Optimization of Welding Parameters for Resistance Spot Welding of TRIP Steel using Response Surface Methodology (저항 점 용접에서 반응표면분석법을 이용한 고장력 TRIP강의 최적 용접 조건 설정에 관한 연구)

• 박현성;김태형;이세헌
• Journal of Welding and Joining
• /
• v.21 no.2
• /
• pp.76-81
• /
• 2003
• Due to the environmental problem, automotive companies are trying to reduce the weight of car body. Therefore, WP(Transformation Induced Plasticity) steels, which are hish strength and ductility have been developed. The application of TRIP steel to the members has been reported to increase the energy absorption capability. Welding process is a complex process; therefore deciding the optimal welding conditions is an effective method on the basis of the experimental data. However, using a trial-and-error method from the beginning in such a wide area, in order to decide the optimal conditions requires too many numbers of experiments. To overcome these problems and to decide the optimal conditions, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are for the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. The introduced method was applied to the resistance spot welding process of the TRIP steel and the welding parameters were optimized. (Received December 6, 2002)