• Title, Summary, Keyword: recognition

Search Result 18,526, Processing Time 0.073 seconds

A Study on Development and Real-Time Implementation of Voice Recognition Algorithm (화자독립방식에 의한 음성인식 알고리즘 개발 및 실시간 실현에 관한 연구)

  • Jung, Yang-geun;Jo, Sang Young;Yang, Jun Seok;Park, In-Man;Han, Sung Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.250-258
    • /
    • 2015
  • In this research, we proposed a new approach to implement the real-time motion control of biped robot based on voice command for unmanned FA. Voice is one of convenient methods to communicate between human and robots. To command a lot of robot task by voice, voice of the same number have to be able to be recognition voice is, the higher the time of recognition is. In this paper, a practical voice recognition system which can recognition a lot of task commands is proposed. The proposed system consists of a general purpose microprocessor and a useful voice recognition processor which can recognize a limited number of voice patterns. Given biped robots, each robot task is, classified and organized such that the number of robot tasks under each directory is net more than the maximum recognition number of the voice recognition processor so that robot tasks under each directory can be distinguished by the voice recognition command. By simulation and experiment, it was illustrated the reliability of voice recognition rates for application of the manufacturing process.

Google speech recognition of an English paragraph produced by college students in clear or casual speech styles (대학생들이 또렷한 음성과 대화체로 발화한 영어문단의 구글음성인식)

  • Yang, Byunggon
    • Phonetics and Speech Sciences
    • /
    • v.9 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • These days voice models of speech recognition software are sophisticated enough to process the natural speech of people without any previous training. However, not much research has reported on the use of speech recognition tools in the field of pronunciation education. This paper examined Google speech recognition of a short English paragraph produced by Korean college students in clear and casual speech styles in order to diagnose and resolve students' pronunciation problems. Thirty three Korean college students participated in the recording of the English paragraph. The Google soundwriter was employed to collect data on the word recognition rates of the paragraph. Results showed that the total word recognition rate was 73% with a standard deviation of 11.5%. The word recognition rate of clear speech was around 77.3% while that of casual speech amounted to 68.7%. The reasons for the low recognition rate of casual speech were attributed to both individual pronunciation errors and the software itself as shown in its fricative recognition. Various distributions of unrecognized words were observed depending on each participant and proficiency groups. From the results, the author concludes that the speech recognition software is useful to diagnose each individual or group's pronunciation problems. Further studies on progressive improvements of learners' erroneous pronunciations would be desirable.

A Study on Smart Tourism Based on Face Recognition Using Smartphone

  • Ryu, Ki-Hwan;Lee, Myoung-Su
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.39-47
    • /
    • 2016
  • This study is a smart tourism research based on face recognition applied system that manages individual information of foreign tourists to smartphone. It is a way to authenticate by using face recognition, which is biometric information, as a technology applied to identification inquiry, immigration control, etc. and it is designed so that tourism companies can provide customized service to customers by applying algorism to smartphone. The smart tourism system based on face recognition is a system that prepares the reception service by sending the information to smartphone of tourist service company guide in real time after taking faces of foreign tourists who enter Korea for the first time with glasses attached to the camera. The smart tourism based on face recognition is personal information recognition technology, speech recognition technology, sensing technology, artificial intelligence personal information recognition technology, etc. Especially, artificial intelligence personal information recognition technology is a system that enables the tourism service company to implement the self-promotion function to commemorate the visit of foreign tourists and that enables tourists to participate in events and experience them directly. Since the application of smart tourism based on face recognition can utilize unique facial data and image features, it can be beneficially utilized for service companies that require accurate user authentication and service companies that prioritize security. However, in terms of sharing information by government organizations and private companies, preemptive measures such as the introduction of security systems should be taken.

A Study on Neural Networks for Korean Phoneme Recognition (한국어 음소 인식을 위한 신경회로망에 관한 연구)

  • 최영배
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • /
    • pp.61-65
    • /
    • 1992
  • This paper presents a study on Neural Networks for Phoneme Recognition and performs phoneme recognition using TDNN(Time Delay Neural Network). Also, this paper proposes new training algorithm for speech recognition using neural nets that proper to large scale TDNN. Because phoneme recognition is indispensable for continuous speech recognition, this paper uses TDNN to get accurate recognition result of phoneme. And this paper proposes new training algorithm that can converge TDNN to optimal state regardless of the number of phoneme to be recognized. The result of recognition on three phoneme classes shows recognition rate of 9.1%. And this paper proves that proposed algorithm is a efficient method for high performance and reducing convergence time.

  • PDF

A Study on the Recognition of Korean Digits using Filter-Bank (필터뱅크를 이용한 한국어 숫자음 인식에 관한 연구)

  • Kim, Hong-Sik;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.481-483
    • /
    • 1989
  • This paper is concentrated on the recognition of Korean Digits. The speech signals of each of digits are fed into computer through the 18 bandpass filters, AD converter. Spectrum input data are analyzed and used. BASIC program language is used for recognition performance and the result of recognition is outputed to computer screen and printer. In this paper, the strength and weakness of filter-bank analysis method is described and the technique of real-time recognition is argued. In this experiment, Ratio of recognition for speaker dependent recognition was about 97% and recognition time was also satisfied. Therefore, A way of speaker independent recognition will be presented and using for special communication in the future.

  • PDF

A Study on Korean Allophone Recognition Using Hierarchical Time-Delay Neural Network (계층구조 시간지연 신경망을 이용한 한국어 변이음 인식에 관한 연구)

  • 김수일;임해창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.1
    • /
    • pp.171-179
    • /
    • 1995
  • In many continuous speech recognition systems, phoneme is used as a basic recognition unit However, the coarticulation generated among neighboring phonemes makes difficult to recognize phonemes consistently. This paper proposes allophone as an alternative recognition unit. We have classified each phoneme into three different allophone groups by the location of phoneme within a syllable. For a recognition algorithm, time-delay neural network(TDNN) has been designed. To recognize all Korean allophones, TDNNs are constructed in modular fashion according to acoustic-phonetic features (e.g. voiced/unvoiced, the location of phoneme within a word). Each TDNN is trained independently, and then they are integrated hierarchically into a whole speech recognition system. In this study, we have experimented Korean plosives with phoneme-based recognition system and allophone-based recognition system. Experimental results show that allophone-based recognition is much less affected by the coarticulation.

  • PDF

Review And Challenges In Speech Recognition (ICCAS 2005)

  • Ahmed, M.Masroor;Ahmed, Abdul Manan Bin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.1705-1709
    • /
    • 2005
  • This paper covers review and challenges in the area of speech recognition by taking into account different classes of recognition mode. The recognition mode can be either speaker independent or speaker dependant. Size of the vocabulary and the input mode are two crucial factors for a speech recognizer. The input mode refers to continuous or isolated speech recognition system and the vocabulary size can be small less than hundred words or large less than few thousands words. This varies according to system design and objectives.[2]. The organization of the paper is: first it covers various fundamental methods of speech recognition, then it takes into account various deficiencies in the existing systems and finally it discloses the various probable application areas.

  • PDF

Emotion Recognition Method Based on Multimodal Sensor Fusion Algorithm

  • Moon, Byung-Hyun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.105-110
    • /
    • 2008
  • Human being recognizes emotion fusing information of the other speech signal, expression, gesture and bio-signal. Computer needs technologies that being recognized as human do using combined information. In this paper, we recognized five emotions (normal, happiness, anger, surprise, sadness) through speech signal and facial image, and we propose to method that fusing into emotion for emotion recognition result is applying to multimodal method. Speech signal and facial image does emotion recognition using Principal Component Analysis (PCA) method. And multimodal is fusing into emotion result applying fuzzy membership function. With our experiments, our average emotion recognition rate was 63% by using speech signals, and was 53.4% by using facial images. That is, we know that speech signal offers a better emotion recognition rate than the facial image. We proposed decision fusion method using S-type membership function to heighten the emotion recognition rate. Result of emotion recognition through proposed method, average recognized rate is 70.4%. We could know that decision fusion method offers a better emotion recognition rate than the facial image or speech signal.

Differential Effects of Scopolamine on Memory Processes in the Object Recognition Test and the Morris Water Maze Test in Mice

  • Kim, Dong-Hyun;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.173-178
    • /
    • 2008
  • Several lines of evidence indicate that scopolamine as a nonselective muscarinic antagonist disrupts object recognition performance and spatial working memory when administered systemically. In the present study, we investigated the different effects of scopolamine on acquisition, consolidation, and retrieval phases of object recognition performance and spatial working memory using the object recognition and the Morris water maze tasks in mice. In the acquisition phase test, scopolamine decreased recognition index on object recognition task and the trial 1 to trial 2 differences on Morris water maze task. In the consolidation and retrieval phase tests, scopolamine also decreased recognition index on object recognition task, where as scopolamine did not exhibited any effects on the Morris water maze task.

Control System for Smart Medical Illumination Based on Voice Recognition (음성인식기반 스마트 의료조명 제어시스템)

  • Kim, Min-Kyu;Lee, Soo-In;Cho, Hyun-Kil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.3
    • /
    • pp.179-184
    • /
    • 2013
  • A voice recognition technology as a technology fundament plays an important role in medical devices with smart functions. This paper describes the implementation of a control system that can be utilized as a part of illumination equipment for medical applications (IEMA) based on a voice recognition. The control system can essentially be divided into five parts, the microphone, training part, recognition part, memory part, and control part. The system was implemented using the RSC-4x evaluation board which is included the micro-controller for voice recognition. To investigate the usefulness of the implemented control system, the experiments of the recognition rate was carried out according to the input distance for voice recognition. As a result, the recognition rate of the control system was more than 95% within a distance between 0.5 and 2m. The result verified that the implemented control system performs well as the smart control system based for an IEMA.