• Title, Summary, Keyword: radial type

Search Result 694, Processing Time 0.038 seconds

Optimal Location of Support Point for Weight Minimization in Radial Gate of Dam Structures (회전식 수문의 중량 최소화에 대한 지지점 위치의 최적설계)

  • Kwon, Young-Doo;Kwon, Soon-Bum;Goo, Nam-Seo;Jin, Seung-Bo
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.492-497
    • /
    • 2000
  • This paper focuses on the weight minimization of radial gate, as an extention of the previous work. Radial gates are commonly used to regulate the flow-rate of general purpose dams, due to its simplicity in manufacture and control. The present study identifies the optimum position of support point for 2 and 3 arm type radial gate, which guarantees the minimum weight satisfying strength constraint condition. These optimum designs are then compared with previously constructed radial gates. The results indicate that the weights of the optimized radial gates reduce by about 20%, compared to those of the conventionally designed radial gates.

  • PDF

Optimum Design of Radial Gate (회전식 수문의 최적 설계)

  • 권영두;권순범;박창규;윤영중
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.267-276
    • /
    • 2001
  • On the basis of structural analysis of the radial gate(that is, Tainter gate), this paper focuses on the optimization of the moment distribution according to the location of the arm of the radial gate. In spite of its importance from economical view point, we could hardly find the study on the optimum design of radial gate. Accordingly, the present study identifies the optimum section modulus for a radial arm along with the optimum position for 2 of 3 radial arms with a convex cylindrical skin plate relative to a given radius of the skin plate curvature, pivot point, water depth, ice pressure, etc. These optimum measurements are then compared with previously constructed radial gates. The results indicate that the optimum section modulus vague for a radial arm was appreciably smaller than the previously constructed examples.

  • PDF

Anatomical Variants of Lister's Tubercle: A New Morphological Classification Based on Magnetic Resonance Imaging

  • Chan, Wan Ying;Chong, Le Roy
    • Korean Journal of Radiology
    • /
    • v.18 no.6
    • /
    • pp.957-963
    • /
    • 2017
  • Objective: Lister's tubercle is used as a standard anatomical landmark in hand surgery and arthroscopy procedures. In this study, we aimed to evaluate and propose a classification for anatomical variants of Lister's tubercle. Materials and Methods: Between September 2011 and July 2014, 360 MRI examinations for wrists performed using 1.5T scanners in a single institution were retrospectively evaluated. The prevalence of anatomical variants of Lister's tubercle based on the heights and morphology of its radial and ulnar peaks was assessed. These were classified into three distinct types: radial peak larger than ulnar peak (Type 1), similar radial and ulnar peaks (Type 2) and ulnar peak larger than radial peak (Type 3). Each type was further divided into 2 subtypes (A and B) based on the morphology of the peaks. Results: The proportions of Type 1, Type 2, and Type 3 variants in the study population were 69.2, 21.4, and 9.5%, respectively. For the subtypes, the Type 1A variant was the most common (41.4%) and conformed to the classical appearance of Lister's tubercle; whereas, Type 3A and 3B variants were rare configurations (6.4% and 3.1%, respectively) wherein the extensor pollicis longus tendon coursed along the radial aspect of Lister's tubercle. Conclusion: Anatomical variations of Lister's tubercle have potential clinical implications for certain pathological conditions and pre-procedural planning. The proposed classification system facilitates a better understanding of these anatomical variations and easier identification of at-risk and rare variants.

Local zooming genetic algorithm and its application to radial gate support problems

  • Kwon, Young-Doo;Jin, Seung-Bo;Kim, Jae-Yong;Lee, Il-Hee
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.611-626
    • /
    • 2004
  • On the basis of a structural analysis of radial gate (i.e. Tainter gate), the current paper focuses on weight minimization according to the location of the arms on a radial gate. In spite of its economical significance, there are hardly any previous studies on the optimum design of radial gate. Accordingly, the present study identifies the optimum position of the support point for a radial gate that guarantees the minimum weight satisfying the strength constraint conditions. This study also identifies the optimum position for 2 or 3 radial arms with a convex cylindrical skin plate relative to a given radius of the skin plate curvature, pivot point, water depth, ice pressure, etc. These optimum designs are then compared with previously constructed radial gates. Local genetic and hybrid-type genetic algorithms are used as the optimum tools to reduce the computing time and enhance the accuracy. The results indicate that the weights of the optimized radial gates are appreciably lower than those of previously constructed gates.

ON ENERGY ESTIMATES FOR A LANDAU-LIFSCHITZ TYPE FUNCTIONAL IN HIGHER DIMENSIONS

  • Qi, Longxing;Lei, Yutian
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1207-1218
    • /
    • 2009
  • The authors study the asymptotic behavior of radial minimizers of an energy functional associated with ferromagnets and antiferromagnets in higher dimensions. The location of the zeros of the radial minimizer is discussed. Moreover, several uniform estimates for the radial minimizer are presented. Based on these estimates, the authors establish global convergence of radial minimizers.

Interval type-2 fuzzy radial basis function neural network (Interval 제 2 종 퍼지 radial basis function neural network)

  • Choe, Byeong-In;Lee, Jeong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.19-22
    • /
    • 2006
  • Type-2 fuzzy 이론은 기존의 퍼지 이론보다 패턴의 불확실성에 대한 제어를 더 향상시킬 수 있다. 반면에 계산 량이 커지는 문제점 때문에 본 논문에서는 type-2 fuzzy set 대신에 secondary membership이 interval의 형태를 갖는 interval type-2 fuzzy set을 기존의 radial basis function(RBF) neural network에 적용시킨 interval type-2 fuzzy RBF neural network를 제안한다. 제안한 알고리즘은 interval type-2 fuzzy membership function에 의하여 패턴들의 불확실성을 좀 더 잘 제어하여 기존의 RBF neural network의 성능을 향상시킬 수 있다. 본 논문에서는 제안한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 분류 결과를 보인다.

  • PDF

Control of Radial Force in Double Stator Type Bearingless Switched Reluctance Motor

  • Peng, Wei;Xu, Zhenyao;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.766-772
    • /
    • 2013
  • Modeling and control of radial force in the double stator type bearingless switched reluctance motor (BLSRM) is researched. The rotational torque is controlled independently from the radial force control. And the radial force is constant which is independent from the rotor position. In order to realize steady suspension, analytical models of torque and radial force for the proposed structure are derived. Meanwhile, in order to realize steady suspension, control scheme for proposed BLSRM is proposed. In the control method, the radial force can be controlled in arbitrary direction and magnitude by selecting some combinations of radial force windings. The validities of structure and control method are verified by the experimental results.

Radial Type Locomotive Mechanism with Worm for Robotic Endoscope (내시경 로봇을 위한 웜구동 방사형 이동메커니즘)

  • Kim, Kyoung-Dae;Lee, Seunghak;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.220-225
    • /
    • 2002
  • In this paper, we suggest a new locomotive mechanism fur self-propelling robotic endoscope which could substitute conventional endoscope. Many researchers proposed inchworm-like mechanism for self-propelling robotic endoscope. But it could not be commercialized because they did not solve the limitation caused by clamping. Therefore, we suggest a new radial-type locomotive mechanism with worm. It can propel itself in any situation and take passive-steering because of radial type. In addition, it can be miniaturized with worm. In this paper, we evaluate the mechanism in the dead pig colon as well as under various environments, and verify the performance fur robotic endoscope.

Study of the radial Turbine for Wave Energy Conversion (파력발전용 레이디얼터빈성능에 관한 연구)

  • Kim Tae-Ho;Kim Heuy-Dong;Setoguchi Toshiaki
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.549-552
    • /
    • 2002
  • The objective of this study is to clarify the detailed performances of the impulse type radial turbine and to present an optimum configuration of the turbine. The impulse type radial turbine has been manufactured and investigated experimentally under steady and sinusoidally oscillating flow conditions by model testing. Then, the starting characteristics under sinusoidally flow conditions have been evaluated by a numerical simulation using a quasi-steady analysis. As a result, the running and starting characteristics of the impulse type radial turbine for wave energy conversion have been clarified. Furthermore, the recommended configuration is presented, especially for setting angles of inner and outer guide vanes.

  • PDF

Development of piston contact mechanism for radial piston pump (레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발)

  • Ham, Y.B.;Cha, J.G.;Kim, D.M.;Kong, T.W.;Yun, S.N.;Ahn, K.Y.;Kweon, B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF