• Title, Summary, Keyword: production process

Search Result 8,197, Processing Time 0.088 seconds

Economic Selection of Optimum Process Mean for a Mixture Production Process (혼합물 생산공정의 최적 공정평균의 경제적 선정)

  • Lee, Min-Koo
    • Journal of the Korean Society for Quality Management
    • /
    • v.33 no.4
    • /
    • pp.111-116
    • /
    • 2005
  • This paper considers the problem of optimally choosing the sub-process means of a mixture production process where two important ingredients are mixed. The quantity of each ingredient is controlled through each corresponding sub-process. The values of the sub-process mean directly affect the defective rate, production, scrap and reprocessing costs for the mixture production process. After inspecting every incoming item, each conforming item is sold in a regular market for a fixed price and any nonconforming item is scraped. A model is constructed on the basis of the selling price, production, inspection, and scrap and reprocessing costs. The goal is to determine the optimum sub-process mean values based on maximizing expected profit function relating selling price and cost components. A method of finding the optimum sub-process means is presented when the quantities of the two ingredients are assumed to be normally distributed with known variances. A numerical example is given and numerical studies are performed.

A Study on Evaluation and Improvement of Production Process Using Arena and Six Sigma in Small and Medium Enterprise (Arena와 Six Sigma를 이용한 중소기업의 공정평가 및 개선을 위한 연구)

  • Lim, Seok-Jin;Park, Song-E;Lee, Woo-Neung
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.6
    • /
    • pp.163-169
    • /
    • 2007
  • This study deals with the improvement of production process on a flow production system with the consideration of six sigma. We analyze the production process and survey the important factors of improvement of productivity. Using a six sigma, we find strategic point and suggest a reformation of production process. We applied a simulation technique to simulate the production line proposed by the result of the Six sigma. With the result of the simulation, this study analyzes the propriety of production line and proposes the alternatives of new production process.

Integrated engineering environment for the process FEED of offshore oil and gas production plants

  • Hwang, Ji-Hyun;Roh, Myung-Il;Lee, Kyu-Yeul
    • Ocean Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.49-68
    • /
    • 2012
  • In this paper, an offshore process front end engineering design (FEED) method is systematically introduced and reviewed to enable efficient offshore oil and gas production plant engineering. An integrated process engineering environment is also presented for the topside systems of a liquefied natural gas floating production, storage, and offloading (LNG FPSO) unit, based on the concepts and procedures for the process FEED of general offshore production plants. Various activities of the general process FEED scheme are first summarized, and then the offshore process FEED method, which is applicable to all types of offshore oil and gas production plants, is presented. The integrated process engineering environment is presented according to the aforementioned FEED method. Finally, the offshore process FEED method is applied to the topside systems of an LNG FPSO in order to verify the validity and applicability of the FEED method.

Discrete Event Simulation for the Initial Capacity Estimation of Shipyard Based on the Master Production Schedule (대일정 생산 계획에 따른 조선소 생산 용량의 초기 평가를 위한 이산사건 시뮬레이션)

  • Kim, Kwang-Sik;Hwang, Ho-Jin;Lee, Jang-Hyun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.2
    • /
    • pp.111-122
    • /
    • 2012
  • Capacity planning plays an important role not only for master production plan but also for facility or layout design in shipbuilding. Product work breakdown structure, attributes of production resources, and production method or process data are associated in order to make the discrete event simulation model of shipyard layout plan. The production amount of each process and the process time is assumed to be stochastic. Based on the stochastic discrete event simulation model, the production capacity of each facility in shipyard is estimated. The stochastic model of product arrival time, process time and transferring time is introduced for each process. Also, the production capacity is estimated for the assumed master production schedule.

Manufacturing process improvement of offshore plant: Process mining technique and case study

  • Shin, Sung-chul;Kim, Seon Yeob;Noh, Chun-Myoung;Lee, Soon-sup;Lee, Jae-chul
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.329-347
    • /
    • 2019
  • The shipbuilding industry is characterized by order production, and various processes are performed simultaneously in the construction of ships. Therefore, effective management of the production process and productivity improvement form important key factors in the industry. For decades, researchers and process managers have attempted to improve processes by using business process analysis (BPA). However, conventional BPA is time-consuming, expensive, and mainly based on subjective results generated by employees, which may not always correspond to the actual conditions. This paper proposes a method to improve the production process of offshore plant modules by analysing the process mining data obtained from the shipbuilding industry. Process mining uses information accumulated from the system-provided event logs to generate a process model and determine the values hidden within the process. The discovered process is visualized as a process model. Subsequently, alternatives are proposed by brainstorming problems (such as bottlenecks or idle time) in the process. The results of this study can aid in productivity improvement (idle time or bottleneck reduction in the production process) in conjunction with a six-sigma technique or ERP system. In future, it is necessary to study the standardization of the module production processes and development of the process monitoring system.

A Study on Improvement of Production Process Using Arena and Six Sigma (Arena와 Six Sigma를 이용한 공정개선을 위한 연구)

  • Lim, Seok-Jin;Park, Song-I;Byun, Jong-Won;Cho, Jae-Kyung;Bang, Hyung-Soo;Kwon, Sun-Mi;Lee, Woo-Neung
    • Proceedings of the Safety Management and Science Conference
    • /
    • /
    • pp.9-19
    • /
    • 2007
  • This study deals with the improvement of production process on a flow production system with the consideration of six sigma. We analyze the production process and survey the important factors of improvement of productivity. Using a six sigma, we find strategic point and suggest a reformation of production process. We applied a simulation technique to simulate the production line proposed by the result of the Six sigma. With the result of the simulation, this study analyzes the propriety of production line and proposes the alternatives of new production process.

  • PDF

An Axiomatic model of the multi-stage production process (다단계 생산공정에 대한 공리모델)

  • Ahn, Ung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • /
    • pp.175-184
    • /
    • 1993
  • Modeling the production process is a necessary and essential aspect of the production planning. This paper introduces a theoretical model of the multi-stage production process. A multi-stage production process is regarded as a network of interrelated production activities which use system exogenous inputs of goods in production and the intermediate products transfers between activities to produce final products. Our model is characterized by (1) a few of the production-related assumptions and (2) two types of elements "goods and activities" that are represented in terms of the network terminology. This model is different from the another multi-stage production models, so-called production network models in relation to the production-theoretical concept. It is not based on the concept of the production correspondence and the activity production functions, but the technology model of Koopmans. Koopmans.

  • PDF

Economic Selection of the Lower Limit and the Process Mean for a Continuous Production Process (연속생산공정에서 규격하한과 공정평균의 경제적 설정)

  • Hong, Sung-Hoon;Lim, Hoon
    • Journal of the Korean Society for Quality Management
    • /
    • v.23 no.3
    • /
    • pp.20-32
    • /
    • 1995
  • This paper is concerned with the economic selection of both the lower limit and the process mean for a continuous production process. Consider a production process where items are produced continuously. All of the items are subject to acceptance inspection. The items for which the measured values of the quality characteristic are larger than the lower limit are accepted, and those smaller than the lower limit are rejected and excluded from shipment. The process mean may be set higher to reduce the costs incurred by imperfect quality. Using a higher process mean, however, results in a higher production cost when production cost is an increasing function of the quality characteristic. Assuming that the quality characteristic is normally distributed with known variability, cost models are constructed which involve production cost, cost incurred by imperfect quality, rejection cost, and inspection cost. Methods of finding optimal values of the lower limit and the process mean are presented and numerical examples are given.

  • PDF

Applications of Goods Mutation Control Form in Accounting Information System: A Case Study in Sumber Indah Perkasa Manufacturing, Indonesia

  • ARIF, Donny;YUCHA, Nikma;SETIAWAN, Setiawan;OKTARINA, Dian;MARTAH, Varid;MUTTAQIIN, Ninnasi
    • The Journal of Asian Finance, Economics, and Business
    • /
    • v.7 no.8
    • /
    • pp.419-424
    • /
    • 2020
  • This study analyzes the new GMCF method applied by the company with the aim to find out how the production of Accounting Information Systems (AIS) implemented by the company can be managed properly. The study also seeks to find out whether the company needs new system support facilities to facilitate the production performance reporting process of each division and evaluate the performance of GMCF systems in the company. The methods used are descriptive analysis techniques and statistical tests of Paired Sample T-Test comparison; this study uses production data of each unit of a product with random sampling to determine the level of product damage and compare production with the GMCF system and prior to using it. The results of the analysis found that the application of goods mutation control forms (GMCF) greatly influenced the smooth production reporting process, which resulted in an increase in achieving production targets and reducing the risk of product damage during the production process. The company also benefits from the efficiency of production costs when using the GMCF system and can quickly design policies for products that are damaged during the production process. In addition, the company can have damaged products repaired faster than before.

A Decision of the Production Control Policy using Simulation in Zinc Manufacturing Process (시뮬레이션을 이용한 아연공장의 생산통제 방안의 결정)

  • Kim, Jun-Mo;Kim, Yearn-Min
    • IE interfaces
    • /
    • v.21 no.4
    • /
    • pp.418-434
    • /
    • 2008
  • This paper studied issues in decision making on the production control policy of a cathode plate manufacturing process in zinc refining plant. The present production system has a long lead time from raw materials (aluminum plate) to products (cathode plate) due to many WIP inventories. Because WIP inventories are stocked at each process and moved from one place to another frequently, they are the main cause of inefficiency in the process. In this paper, to solve this problem, several production control policies have been identified and studied. Several simulation models are used to compare the performances of these production control policies. The output lead time and WIP (Work In Process) of real production system are compared with those of simulation models. PUSH, CONWIP, DBR, KANBAN and CONWIP-DBR models have been used to simulate and review the optimized production control policy that achieves the target output quantities with decreased lead time and WIP. The simulation results of each production control policy show that CONWIP and CONWIP-DBR models are the good production control policy under the present production system. Especially in present production system, CONWIP with one parameter is easier control policy than CONWIP-DBR with two parameters. Therefore CONWIP has been selected as the best optimum production control policy. With CONWIP, lead time has been reduced by 97% (from 6,653 to 187 minute) and WIP has been reduced from 1,488 to 53, compared to the present system.