• Title, Summary, Keyword: polymorphism

Search Result 3,047, Processing Time 0.061 seconds

Development of a Genetic Map of Chili Pepper Using Single Nucleotide Polymorphism Markers Generated from Next Generation Resequencing of Parents (양친의 대량 염기서열 해독을 통해 개발된 SNP 분자표지를 이용한 고추 유전자지도 작성)

  • Lee, Jundae;Park, Seok Jin;Do, Jae Wahng;Han, Jung-Heon;Choi, Doil;Yoon, Jae Bok
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.473-482
    • /
    • 2013
  • Molecular markers, as an efficient selection tool, have been and is being used for practical breeding program in chili pepper (Capsicum annuum L.). Recently, a lot of researches on inheritance and genetic analysis for quantitative traits including capsaicinoids, carotenoids, and sugar content in pepper are being performed worldwide. It has been also reported that QTL mapping is a necessary tool to develop molecular markers associated with the quantitative traits. In this study, we suggested a new method to construct a pepper genetic map using SNP (HRM) markers generated from NGS resequencing of female and male parents. Plant materials were C. annuum 'NB1' (female parent), C. chinense 'Jolokia' (male parent), and their $F_2$ population consisting of 94 progenies. Sequences of 4.6 Gbp and 6.2 Gbp were obtained from NGS resequencing of 'NB1' and 'Jolokia', respectively. Totally, 4.29 million SNPs between 'NB1' and 'Jolokia' were detected and the 1.76 million SNPs were clearly identified. Among them, total 145 SNP (HRM) primer pairs covering pepper genetic map were selected, and the 116 SNP (HRM) markers of them were located on this map. Total distance of the map, which consisted of 12 linkage groups and matched with basic chromosome numbers of pepper, was 1,167.9 cM. According to the mapping result, we concluded that our mapping method was suitable to construct a pepper genetic map fast and accurately. In addition, the genetic map could be directly used for QTL analysis of traits different between both parents.

Analysis of the Genetic Diversity of Radish Germplasm through SSR Markers Derived from Chinese Cabbage (배추 SSR 마커를 이용한 무의 육성 계통 및 수집종의 유전적 다양성 분석)

  • Park, Suhyoung;Choi, Su Ryun;Lee, Jung-Soo;Nguyen, Van Dan;Kim, Sunggil;Lim, Yong Pyo
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.457-466
    • /
    • 2013
  • Since the early 1980s, the National Institute of Horticultural & Herbal Sciences has been breeding and collecting diverse radish breeds to select those samples with better horticultural characteristics, to ultimately expand and develop as good radish produce. Genetic diversity is a crucial factor in crop improvement and therefore it is very important to obtain various variations through sample collection. The collected samples were compared with one another in order to assess the level of diversity among the collections, and this procedure allowed for increased application of the gathered resources and aided in determining the direction to secure further samples. Towards this end, this experiment was conducted in order to examine whether the SSR markers derived from Chinese cabbage samples could be transferred to the radish samples. Among the radish breeding lines and introduced resources, 44 lines were used as materials to analyze the genotype using 22 SSR markers selected. As a result, the analysis showed that among all the selected markers, 'cnu_m139' and 'cnu_m289' were the most useful markers for diversity evaluation. The genetic relationship of the radish genetic resources showed that the geographic origins affected the diversity. Furthermore, the different types of radish groups were also determined by the year they were bred. This result demonstrated that there are differences between the older radish breeds and the more recently developed radish breeds. Even though a relatively small number of markers were used in the analysis, it was possible to distinguish whether the radish was bred 30 years ago or in the 2000s, and that the similar physical shapes comprised a particular group, showed that the SSR markers can indeed be successfully applied to to study the diversity within radish breeding lines. Through the results of this study, it can be concluded that the SSR marker developed for the Chinese cabbage can be applied to examine the genetic diversity and analyze the relationship (genetic resource determination) of radish.

Genotypic and Phenotypic Characteristics of Staphylococcus aureus Isolates from Lettuces and Raw Milk (상추와 원유에서 분리한 황색 포도상구균의 유전형 및 표현형 특징)

  • Jung, Hye-Jin;Cho, Joon-Il;Park, Sung-Hee;Ha, Sang-Do;Lee, Kyu-Ho;Kim, Cheol-Ho;Song, Eun-Seop;Chung, Duck-Hwa;Kim, Min-Gon;Kim, Kwang-Yup;Kim, Keun-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.134-141
    • /
    • 2005
  • To characterize genotypic and phenotypic traits of Staphylococcus aureus isolates (n = 86) from lettuces and raw milk, major virulence-associated genes and antibiotic susceptibility were detected using PCR-based methods and disk diffusion method, respectively. All isolates possessed coagulase gene and showed five polymorphism types [500 bp (2.4%), 580 bp (17.4%), 660 bp (61.6%), 740 bp (17.4%), and 820 bp (1.2%)] due to variable numbers of tandem repeats present within the gene. Two or three different loci of hemolysin gene family were dominant in isolates, 47 of which (55%) possessed combination of hla/hld/hlg-2 genes as the most prevalent types. Among enterotoxin-encoding genes, sea was detected from 32 isolates (37%), sed from 1 isolate (1%), and sea and sed genes were co-detected from 4 isolates (5%), whereas seb, sec, and tsst-1 genes were not detected. All isolates were susceptible to ciprofloxacin, trimethoprim/sulfamethoxazole, oxacillin, and vancomycin, 85 isolates (99%) to penicillin G, 54 isolates (63%) to chloramphenicol, 51 isolates (59%) to erythromycin, and 7 isolates (8%) to clindamycin. Among resistant isolates, seven displayed multiantibiotic-resistance against two different antibiotics.

Identification and Characterization of Three Isolates of Cucumber mosaic virus Isolated from Weed Hosts (잡초에서 분리한 3종 Cucumber mosaic virus의 동정과 특성)

  • Lee, Hyeok-Geun;Kim, Sung-Ryul;Jeon, Yong-Woon;Kwon, Soon-Bae;Ryu, Ki-Hyun;Choi, Jang-Kyung
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Three isolates of Cucumber mosaic virus (CMV) were isolated from weed hosts showing typical mosaic symptoms, and some properties of the viruses were investigated. CMV isolates, designated as Is-CMV, Jd-CMV and Pla-CMV from Isodon inflexus, Jeffersonia dubia and Phryma leptostachya var. asiatica, respectively, were identified and characterized by biological reaction in several host plants, serological property, dsRNA analysis, reverse transcription-polymerase chain reaction (RT-PCR), restriction fragment-length polymorphism (RFLP). All isolates systemically infected in Nicotiana benthamiana, Cucurbita pepo cv. Black beauty and Cucumis sativus, and did not reveal any differences in these host plants between the isolates. However, remarkable difference in the symptoms was found between the CMVs in Capsicum annuum. Is-CMV induced an asymptomatic symptoms, while Jd-CMV and Pla-CMV produced severe mosaic symptoms in C. annuum plants. In dsRNA analysis, all isolates revealed four major bands with estimated molecular size of 3.4, 3.2, 2.1 and 1.0 kbp. The cDNAs of coat protein gene of the isolates were amplified by RT-PCR using a genus-specific single pair primers that designed to amplify a DNA fragment of approximately ranging from 938 to 966 bp. By restriction mapping analysis using RFLP of the RT-PCR products as well as by serological properties of gel diffusion test, the CMV isolates belong to a typical members of CMV subgroup IA. This is the first report on the occurrence of CMV in the three weed hosts.

A Study on the Prolactin Receptor 3 (PRLR3) Gene and the Retinol-binding Protein 4 (RBP4) Gene as Candidate Genes for Growth and Litter Size Traits of Berkshire in Korea (국내 버크셔 돼지에서 성장 및 산자수의 후보유전자로서 PRLR3와 RBP4에 관한 연구)

  • Do, Chang-Hee;Kim, Seon-Ku;Kang, Han-Suk;Shin, Teak-Soon;Lee, Hong-Gu;Cho, Seong-Keun;Do, Kyung-Tak;Song, Ji-Na;Kim, Tae-Hun;Choi, Bong-Hwan;Sang, Byung-Chan;Joo, Yeong-Kuk;Park, Jun-Kyu;Lee, Sung-Hoon;Lee, Jeong-Ill;Park, Jeong-Suk;Sin, Young-Soo;Kim, Byung-Woo;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.20 no.6
    • /
    • pp.825-830
    • /
    • 2010
  • Two diallelic markers at candidate gene loci, the prolactin receptor 3 (PRLR3) gene and the retinol-binding protein 4 (RBP4) gene were evaluated for their association with growth and litter size traits in Berkshire. Genetic evaluation was conducted for 5,919 pigs with pedigree information, which included 3,480 growth performance records and 775 litter size records of 224 sows. From the same herd, genotyping was carried out on 144 and 156 animals for PRLR3 and RBP4, respectively. After assigning a genotype to subjects in which both parents had a homozygous genotype, numbers of genotyped animals increased to 474 and 338, for the PRLR3 gene and RBP4 gene, respectively. The genotype effects of two markers were estimated with breeding values of the genotyped animals. The additive effects of total number of piglets born and number of piglets born alive in the PRLR3 locus were -0.28 and -0.13, respectively. The dominance effect of the RBP4 locus on average daily gain was -10.58 g. However, the polymorphism of the RBP4 locus in total number of piglets born and number of piglets born alive has shown -0.34 and -0.33 of the additive genetic effects. In view of the results, MAS (marker-assisted selection) favoring B alleles of RBP4 and PRLR3 loci could potentially accelerate the rate of the genetic improvement in the litter size traits.

Polymorphisms of TAS1R3 and GNAT3 Genes Are Associated with Patients with Taste Disorder (미각장애와 TAS1R3 및 GNAT3 유전자의 다형성과의 연관성)

  • Bae, Jae-Woong;Kim, Un-Kyung;Kwon, Tae-Jun;Choi, Su-Jin;Ye, Mi-Kyung
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.412-416
    • /
    • 2011
  • Taste sensation plays a crucial role in selecting and ingesting foods with different qualities which convey information about their nutrient content and/or safety. Sweetness is one of the five modalities in humans and serves as an energy resource for metabolism. There are reports on allelic polymorphisms which influence perception of sweetness in mice and humans. Since the influence of genetic factors on taste disorder has not been studied, we investigated the association of genetic polymorphisms in TAS1R3 and guanine nucleotide binding protein, alpha transducing 3 (GNAT3) genes and taste disorder. A total of 150 individuals composed of 50 patients with taste disorder and 100 healthy controls were recruited for the study and PCR-mediated directing sequencing method was used to genotype for two different single nucleotide polymorphisms (SNPs) - rs307355 (T>C) and rs35744813 (T>C) in the TAS1R3 gene, and rs7792845 (T>C) and rs1524600 (C>T) in the the GNAT3 gene. The allele and genotype frequencies of rs307355 and rs35744813 in the TAS1R3 gene showed a significant association between patients with taste disorder (p=0.022 and p=0.013 in both of SNPs, respectively). In addition, the frequency of T-T haplotype in the TAS1R3 gene was higher in taste disorder cases than in the controls (OR, 1.93: 95%. CI, 1.09-3.39, p=0.022). In the GNAT3, the genotype frequency of rs7792845 in the patients was also different from the controls (p=0.048), but allele frequency was not significantly associated in either group. Our result provides the frequencies of SNPs and haplotypes of the TAS1R3 and GNAT3 genes for the fundamental information of nutrigenetics in perception of the taste of sweetness in the Korean population. Also, the study suggests that the allelic polymorphisms of TAS1R3 and GNAT3 genes may be useful as a molecular marker for evaluating patients with taste disorder. Further studies with large samples are required to clarify our observation.

Association between a non-synonymous single nucleotide polymorphism in the Complement component 9 (C9) gene and meat-quality traits in Berkshire pigs (Complement component 9 (C9) 유전자의 단일염기다형성과 버크셔 돼지 육질 형질과의 연관성 분석)

  • Ha, Jeongim;Hwang, Jung Hye;Yu, Go Eun;Park, Da Hye;Kang, Deok Gyeong;Kim, Tae Wan;Park, Hwa Chun;An, Sang Mi;Kim, Chul Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.480-485
    • /
    • 2018
  • In this study, to identify single nucleotide polymorphisms (SNPs) associated with meat quality in Berkshire pigs, we performed RNA sequencing. A non-synonymous SNP (nsSNP) in the Complement component 9 (C9) gene was identified, and the association between meat quality traits and the C9 genotype was analyzed. The nsSNP in the C9 gene was located at c.942 G>T. In the dominant model, significant associations were observed between the SNP and meat quality traits such as CIE L, collagen content, moisture level, and $pH_{24h}$, whereas in the co-dominant model, significant associations were observed between the SNP and CIE L, collagen content, and protein content. In the recessive model, a significant association between the C9 genotype and the collagen content was observed. In addition, we identified the significant relationship between the C9 genotype and meat quality according to sex. These results indicate that the C9 SNP can be used as a genetic marker for improving pork quality.

Imputation Accuracy from 770K SNP Chips to Next Generation Sequencing Data in a Hanwoo (Korean Native Cattle) Population using Minimac3 and Beagle (Minimac3와 Beagle 프로그램을 이용한 한우 770K chip 데이터에서 차세대 염기서열분석 데이터로의 결측치 대치의 정확도 분석)

  • An, Na-Rae;Son, Ju-Hwan;Park, Jong-Eun;Chai, Han-Ha;Jang, Gul-Won;Lim, Dajeong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1255-1261
    • /
    • 2018
  • Whole genome analysis have been made possible with the development of DNA sequencing technologies and discovery of many single nucleotide polymorphisms (SNPs). Large number of SNP can be analyzed with SNP chips, since SNPs of human as well as livestock genomes are available. Among the various missing nucleotide imputation programs, Minimac3 software is suggested to be highly accurate, with a simplified workflow and relatively fast. In the present study, we used Minimac3 program to perform genomic missing value substitution 1,226 animals 770K SNP chip and imputing missing SNPs with next generation sequencing data from 311 animals. The accuracy on each chromosome was about 94~96%, and individual sample accuracy was about 92~98%. After imputation of the genotypes, SNPs with R Square ($R^2$) values for three conditions were 0.4, 0.6, and 0.8 and the percentage of SNPs were 91%, 84%, and 70% respectively. The differences in the Minor Allele Frequency gave $R^2$ values corresponding to seven intervals (0, 0.025), (0.025, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 0.3). (0.3, 0.4) and (0.4, 0.5) of 64~88%. The total analysis time was about 12 hr. In future SNP chip studies, as the size and complexity of the genomic datasets increase, we expect that genomic imputation using Minimac3 can improve the reliability of chip data for Hanwoo discrimination.

Genetic Diversity and Relationship of Ogye Population in Korea Using 25 Microsatellite Markers (MS 마커를 활용한 지역별 오계 유전자원의 다양성 및 유연관계 분석)

  • Roh, Hee-Jong;Kim, Kwan-Woo;Lee, Jin-Wook;Jeon, Da-Yeon;Kim, Seung-Chang;Jeon, Ik-Soo;Ko, Yeoung-Gyu;Lee, Jun-Heon;Kim, Sung-Hee;Baek, Jun-Jong;Oh, Dong-Yep;Han, Jae-Yong;Lee, Seung-Sook;Cho, Chang-Yeon
    • Korean Journal of Poultry Science
    • /
    • v.45 no.3
    • /
    • pp.229-236
    • /
    • 2018
  • The aim of this study was to evaluate the genetic diversity and relationships of Ogye populations in Korea. A total of 243 genomic DNA samples from 6 Ogye population (Yeonsan Ogye; YSO, Animal Genetic Resources Research Center Ogye; ARO, Chungbuk Ogye; CBO, Chungnam Ogye; CNO, Gyeongbuk Ogye; GBO, Seoul National University Ogye; SUO) and 3 introduced chicken breeds (Rhode Island Red; RIR, White Leghorn; LG, Cornish; CN) were used. Sizes of 25 microsatellite markers were decided using GeneMapper Software(v 5.0) after analyzing ABI 3130XL. A total of 153 alleles were observed and the range was 2 to 10 per each locus. The mean of expected and observed heterozygosity and PIC (Polymorphism Information Content) value was 0.53, 0.50, 0.46 respectively. The lowest genetic distance (0.073) was observed between YSO and SUO, and the highest distance (0.937) between the RIR and CBO. The results of clustering analysis suggested 3 clusters (${\Delta}K=7.96$). Excluding GBO population, 5 Ogye populations (YSO, ARO, CBO, CNO, SUO) were grouped in same cluster with high genetic uniformity (0.990, 0.979, 0.989, 0.994, 0.985 respectively). But GBO population was grouped in cluster 1 with low genetic uniformity (0.340). The results of this study can be use to basic data for the genetic evaluation and management of Ogye populations in Korea.

Association of SNP Markers on Chromosomes 3 and 9 with Body Weight in Jeju Horses (제주마에서 3번 및 9번 염색체상의 단일염기변이와 생체중과의 관련성 연구)

  • Kim, Nam Young;Yang, Young Hoon;Park, Nam Geon;Yang, Byoung Chul;Son, Jun Kyu;Shin, Sang Min;Woo, Jae Hoon;Shin, Moon Cheol;Yoo, Ji Hyun;Hong, Hyun Ju;Park, Hee Bok
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.795-801
    • /
    • 2018
  • This study was conducted to investigate the association of single nucleotide polymorphism (SNP) markers on equine chromosomes (ECA) 3 and 9 with body weight in Jeju horses. We used DNA samples and body weight data of 320 horses provided by the Livestock Promotion Agency, Jeju Special Self-Governing Province, and the Korean Racing Association, respectively. We genotyped all the experimental animals using nine SNP markers located on ECA 3 (BIEC2-808466, BIEC2-808543, BIEC2-808967, and BIEC2-809370) and ECA 9 (BIEC2-1105370, BIEC2-1105372, BIEC2-1105377, BIEC21105505, and BIEC2-1105840). These markers were selected due to their effects on body conformation traits in horses. The joint effect of the genotypes of the two SNP markers (BIEC2-808467 and BIEC2-1105377) regarding body weight were also evaluated. The estimated breeding value (EBV) of body weight was obtained as the dependent variable for association analyses using a linear mixed model. Significant associations were detected between SNP markers (BIEC2-808543, BIEC2-808967, BIEC2-809370, BIEC2-1105370, BIEC2-1105372, and BIEC2-1105377) and the body weight EBV. In addition, the joint genotype effect of the BIEC2-808467 and BIEC2-1105377 on the body weight EBV was significant. These results indicate that the SNP markers, which showed their significant effects on body conformation, can be used as genetic markers to improve the efficiency of the selective breeding program for the body weight traits in Jeju horses.