• Title, Summary, Keyword: polymer modifier

Search Result 63, Processing Time 0.085 seconds

Preparation and Characterization of Bentonite Rheology Modifiers (벤토나이트 유동성 개질제의 제조 및 특성)

  • Lee, Suk-Kee;Koo, Kwang-Mo;Yang, Kyung-Su;Park, Sung-Woo;Lee, Byung-Kyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1090-1096
    • /
    • 2002
  • Six different composition of water-swellable bentonite rheology modifiers(WSB-1~WSB-6) were prepared by the compounding of peptizers and anionic surfactants as an additives with Bentonite(BEN) of montmorillonite group. Average particle size, particle morphology and water-swellability of WSB and the viscosity with additives were measured, respectively. And the rheological behavior of WSB were investigated using the rheometer. The viscosity of WSB-1 increased with decreasing both pH and average particle size of BEN, WSB-2 treated $Na_2CO_3$ as a peptizer showed the maximum viscosity. These results can be interpretated cause for rearrangment as the edge-to-face structure of BEN particles containing WSB. Also, WSB-4∼WSB-6 containing both peptizer and anionic surfactant was sol phase that their viscosity was not nearly with the shear rate, however, WSB-3 containing Tetrasodium Pyrophosphate(TSPP) as an anionic surfactant showed the thixotropy by the viscosity difference of 1000 times with the shear rate. From this result, the anions of TSPP can be explained to arrange in edge of BEN particles containing WSB-3.

Characteristics of Fatigue Resistance of Recycled Asphalt Concretes by Modified Mixing Process (재생 아스팔트 콘크리트 혼합물의 혼합방법 개선에 따른 피로저항 특성)

  • Doh, Young-Soo;Ko, Tae-Young;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.4
    • /
    • pp.135-143
    • /
    • 2006
  • This study evaluated the fatigue resistance characteristics of hot-mix recycled asphalt mixtures which were prepared by a new blending method. Since the binder of RAP shows higher viscosity without being rejuvenated in the ordinary recycled mixture, this new(modified) blending method was developed for obtaining more uniform level of binder viscosity in the recycled mixture. Cold-planned RAP was collected and mix design was performed using 15% RAP content for two virgin aggregate, gneiss and granite. Penetration grade of 60-80 asphalt was used in mixing recycled mixture together with a polymer modifier, LDPE. Indirect tensile fatigue tests were carried out to evaluate characteristics of fatigue resistance of performance of recycled asphalt mixtures. The recycled mixtures with LDPE 6% showed higher repeated loading fatigue life. Fatigue life ratio of new(N) mixing method mixtures was approximately 0.6-0.7 before aging and 0.8-1.0 after aging treatment of ordinary(O) mixing method mixture. This means the N mixture becomes stronger with aging process increase. If further aging is treated, N mixture may be showing stronger resistance than O mixture.

  • PDF

Effect of Compatibilizers on the Morphological, Mechanical and Rheological Properties of PP/PCL and TPO/PCL Blends (상용화제의 첨가에 따른 PP/PCL 블렌드와 TPO/PCL 블렌드의 기계적 물성 모폴로지 및 유변학적 물성)

  • Lee, Yun-Kyun;Kim, Min-Soo;Kim, Woo-Nyon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.342-347
    • /
    • 2011
  • The effects of compatibilizers on the mechanical and rheological properties of PP/PCL and TPO/PCL blends have been studied. The thermoplastic polyolefin (TPO) consists of PP (80 wt%), EPDM (15 wt%) and Talc (5 wt%). Maleic anhydride grafted polypropylene (PP-g-MAH) and maleic anhydride grafted styrene-(ethylene-co-butene)-styrene copolymer (SEBS-g-MAH) were used as compatibilizers. In mechanical properties of PP/PCL and TPO/PCL blends, tensile strength was increased when PP-g-MAH was used as a compatibilizer, and impact strength was increased when SEBS-g-MAH was used as a compatibilizer. From the results of SEM morphology of PP/PCL blend, PCL droplet size was decreased by the addition of PP-g-MAH. From the results of rheological property, complex viscosity of the PP/PCL and TPO/PCL blends did not change appreciably when the compatibilizers were added. From the results of mechanical, morphological and rheological properties of the blends, PP-g-MAH acted as a compatibilizer to increase the tensile strength of the PP/PCL and TPO/PCL blends. While SEBS-g-MAH acted as a impact modifier to increase the impact strength of the PP/PCL and TPO/PCL blends.