• Title, Summary, Keyword: polymer modifier

Search Result 63, Processing Time 0.045 seconds

The Study on Prepare Water Proof Agent by Acryl Copolymer and Oleic Acid Mixed Emulison (아세트화 아크릴 공중합체-올레인산 혼합 에멀젼계 방수제 제조연구)

  • Kim, Young-Geun;Hwang, Yong-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.83-94
    • /
    • 1996
  • EMA-co-DAMA were synthesized from 2-diethylaminoethyl metacrylate and ethylhexyl metacrylate in acrylmonomer. To facilitate water emulsification, acrylic copolymer was cationized by acetic acid to produce acetated acrylic copolymer. The structures of the synthesized copolymer and acetated copolymers were confirmed by IR, NMR, and molecular weight was measure by GPC, and C.H.N elemental analysis. Acetated acrylic copolymers were perfectly emulsified in water and showed increased emulsion stability. Polymer dispersion for cement modifier[(PDCM-PED) water proof agent of cement for concrete in building construction] was prepared by blending of the guaternized acrylic copolymer syndisized above, sodium silicate, sodium gluconate and oleic acid emulsion. The result with prepared polymer dispersion of cement modifier was examined, and it was found that excellent waterprooffing effect ; Water permeability ratio is 0.50 under the water pressure of $100g/cm^2$ and 0.60 under $3kg/cm^2$, and water absorption ratio is $0.42{\sim}0.50$ and $1.0{\sim}1.02$ compressive strength ratio at mixed of water/PDCM-PED is 50 times.

Improving dispersion of multi-walled carbon nanotubes and graphene using a common non-covalent modifier

  • Kwon, Youbin;Shim, Wonbo;Jeon, Seung-Yeol;Youk, Ji-Ho;Yu, Woong-Ryeol
    • Carbon letters
    • /
    • v.20
    • /
    • pp.53-61
    • /
    • 2016
  • The reportedly synergistic effects of carbon nanotubes (CNTs) and graphene hybrids have prompted strong demand for an efficient modifier to enhance their dispersion. Here, we investigated the ability of poly(acrylonitrile) (PAN) to overcome the van der Waals interaction of multi-walled CNTs (MWCNTs) and graphene by employing a simple wrapping process involving ultrasonication and subsequent centrifugation of PAN/MWCNT/graphene solutions. The physical wrapping of MWCNTs and graphene with PAN was investigated for various PAN concentrations, in an attempt to simplify and improve the polymer-wrapping process. Transmission electron microscopy analysis confirmed the wrapping of the MWCNTs and graphene with PAN layers. The interaction between the graphitic structure and the PAN molecules was examined using proton nuclear magnetic resonance, ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The obtained results revealed that the cyano groups of the PAN molecules facilitated adhesion of the PAN molecules to the MWCNTs and graphene for polymer wrapping. The resulting enhanced dispersion of MWCNTs and graphene was verified from zeta potential and shelf-life measurements.

Properties of impact modifier reinforced PPS/MWCNT Nanocomposite (충격보강제가 보강된 PPS (polyphenylene sulfide)/MWCNT (multi-walled carbon nanotube) 나노복합체의 물성연구)

  • Park, Ji Soo;Kim, Seung Beom;Nam, Byeong Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Polymer composites which have electrical properties have been studied in various industries. The Multi-walled carbon nanotube (MWCNT) are thought to be reinforcements for polymers because of their high aspect ratio and specially mechanical, thermal and electrical properties. We introduced MWCNT and impact modifier in order to improve thermal and mechanical properties of Polyphenylene sulfide (PPS) and give electric characteristic to PPS. The thermal properties were investigated by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA). The morphology, mechanical properties and electrical characteristic were performed by Field emission scanning electron microscopy (FE-SEM), Izod impact tester and surface resistance meter. As a result, we could find that the PPS/MWCNT composites have high conductivity and good mechanical properties than neat PPS resin.

Synthesis and Application of Reactive Polymer Modifiers for Asphalt: 2. Application (아스팔트용 반응성 고분자 개질제 합성 및 적용: 2. 적용)

  • Hwang, Ki-Seob;Lee, Jong-Cheol;Jang, Suck-Soo;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer Korea
    • /
    • v.31 no.6
    • /
    • pp.538-542
    • /
    • 2007
  • This study is on the performance analysis of modified asphalts which were prepared by mixing the asphalt with polymer modifiers of varying compositions which were synthesized by the emulsion polymerization method. Thermal properties of mired asphalt were investigated by DSC (differential scanning calorimetry), and dispersion of modifiers in asphalt was investigated by the fluorescence microscope. Dynamic stability and permanent deformation velocities of mixed asphalt were investigated by wheel tracking measurements. Modifier 6 showed the best results in both penetration test and wheel tracking measurement among investigated modifiers, which supports MMA(methyl methacrylate) moiety in modifiers plays better contribution for the enhancement of asphalt performance than styrene moiety does.

Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell (다중벽 탄소 나노튜브 기반 고충전 나노복합 페이스트를 이용한 염료 감응 태양 전지용 상대 전극의 제조에 있어서 분산 제어의 효과)

  • Park, So Hyun;Hong, Sung Chul
    • Polymer Korea
    • /
    • v.37 no.4
    • /
    • pp.470-477
    • /
    • 2013
  • Multi-walled carbon nanotube (MWCNT) based nano-composite pastes having a high filler content are prepared for the facile fabrication of a counter electrode (CE) of dye-sensitized solar cell (DSSC). A polystyrene-based functional block copolymer is prepared through a controlled "living" radical polymerization technique, affording a surface modifier for the dispersion control of MWCNT in the paste. Physical dispersion through a ball-milling method additionally confirms the importance of the dispersion control, providing DSSC with enhanced processibility and improved solar-to-electricity energy conversion efficiency (${\eta}$) values. The performances of the DSSCs are further improved through the incorporation of minor amount of platinum (Pt) nanoparticles into the MWCNT pastes. The DSSC with the Pt/MWCNT hybrid CE exhibits very high ${\eta}$ values, which is superior to that of DSSC with the standard Pt CE.

Study on miscibility, morphology, thermal and mechanical properties of elastomeric impact modifier reinforced Poly(lactide)/Cellulose ester blends (충격보강제로 강인화된 PLA와 cellulose ester 블렌드의 상용성 및 모폴로지, 열적, 기계적 특성에 관한 연구)

  • Park, Jun-Seo;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4081-4086
    • /
    • 2014
  • Cellulose acetate butyrate (CAB) is a biodegradable resin with excellent optical properties, but it is difficult to apply film process. In this study, an attempt was made to improve the processability of CAB using polyactic acid and the mechanical properties using an impact modifier. Polylacitc acid (PLA)/Cellulose acetate butyrate (CAB) blends with an impact modifier were prepared using a twin screw extruder. The temperature range was $140^{\circ}C$ to $200^{\circ}C$, and the screw speed was fixed to 200 rpm. To evaluate the miscibility of impact modified CAB/PLA, the glass transition behavior and morphology were observed by DSC and FE-SEM. The mechanical properties were investigated by dynamic mechanical analysis (DMA) and a Universal Testing Machine (UTM). In addition, the effect of an impact modifier in the polymer matrix was determined using a notched Izod impact strength tester. Finally, the PLA/CAB/impact modifier 75/25/10 ratio was found to be a compatible system. In the 10wt.% impact modifier, the sample had a 4 times higher izod impact strength than the non-toughening composition.

Basic Efficiency Assessment of polymer cementitious Self leveling for floor-finishing materials (폴리머 시멘트계 Self leveling 바닥마감재의 기초성능평가)

  • 도정윤;김완기;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.1005-1010
    • /
    • 2001
  • Recently, polymer-modified mortar has been studied for proposed use on industrial floors as top layers with thin thicknesses, typically 5~ 15mm. The purpose of this study is to evaluate basic properties of self leveling materials using polymer modifier as kinds of SBR, PAE, SUBA. Superplasticizer and thickener have been included in the mixes to reduce bleeding and drying shrinkage as well as in order to facilitate the workability required. The self leveling materials using four types of polymer dispersion are prepared with polymer-cement ratios which respectively range from 50%, 75%, and were tested for basic characteristics such as adhesion in tension, crack resistance test, rebound test after the preparative tests for unit weight, air content, consistency ratio etc. The results show almost as equal quality as existing commercial industrial flooring when mortar is modified by polymer dispersion. Adhesion in tension of polymer modified mortars using each SBR and PAE emulsion was over 10 kgf/$cm^{2}$. Crack or flaw derived from shrinkage is strongly dependent on the type of polymer dispersion because of each different total solid of polymer. It is judged that polymer modified mortar with self-leveling can be very well suited for Floor-finished.

  • PDF

Dielectrophoretic Technique for the Preparation of Density Gradient Polymers Doped with a Dipolar Modifier

  • Woo, Dong-Jin;Mun, Jeong-Min;Lee, Suck-Hyun;Suh, Moon-Ho
    • Macromolecular research
    • /
    • v.11 no.6
    • /
    • pp.467-470
    • /
    • 2003
  • The dielectrophoretic technique was used to prepare density gradient polymers, polystyrene doped with a dipolar modifier, diphenyl sulfide. We have measured concentration gradients of the dopant by UV/Nis spectroscopy as a function of time in a nonuniform electric field. Measured concentration data at different positions of the sample confirmed that a concentration gradient arose after a nonuniform electric field was applied to the system, these data were used to compare the concentration profile with that predicted by the dielectrophoresis equation.

Studies on the Cationic Dyeable Polyester (Cationic Dyeable Polyester의 개발에 관한 연구)

  • 김노수;홍성일
    • Textile Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.14-21
    • /
    • 1978
  • From the studies on polycondensation of cationic dyeable polyester polymer and on their properties in the form of films, the following results were obtained; 1. The modified polyester films increase their moisture regain, decrease their viscosity, lower softening point and improve their antistatic character, according to the amount of modifier added in. 2. The isothermal adsorption curves of Crystal Violet, a cationic dye, on the prepared films were all Langmuir type and, as is estimated, the related combination of dyes and polymers should be a ionic bond. 3. Only from the view point of dyeing properties of the films, reasonable quantity of modifier to be added is about 2 mole percent on the basis of dimethyl terephthalate. 4. Effects of high temperature and carrier on dyeing rate of the modified polyester firm can be said very pronounced, as in the case of normal polyester fibers.

  • PDF

Synthesis of Thermally Stable Organosilicate for Exfoliated Poly(ethylene terephthalate) Nanocomposite with Superior Tensile Properties

  • Kim, Ki-Hong;Kim, Keon-Hyong;Huh, June;Jo, Won-Ho
    • Macromolecular research
    • /
    • v.15 no.2
    • /
    • pp.178-184
    • /
    • 2007
  • A poly(ethylene terephthalate) (PET)/organosilicate nanocomposite, with enhanced mechanical properties, has been prepared using the melt intercalation method. For this purpose, a new organic modifier has been synthesized for the preparation of organosilicate, which is thermally stable and compatible with PET. The use of the new organosilicate yielded almost exfoliated PET nanocomposite; whereas, the PET nanocomposites prepared by use of commercial organoclays (Cloisite 15A and 30B) show only an intercalated morphology. Particularly, the use of the new organosilicate showed an enhanced tensile modulus, and without sacrifice of the tensile strength and elongation on breaking, while the use of commercial organoclays only exhibit a trade-off between those mechanical properties.