• Title, Summary, Keyword: performance based

Search Result 39,953, Processing Time 0.106 seconds

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

Performance Test of Asynchronous Process of OGC WPS 2.0: A Case Study for Geo-based Image Processing

  • Yoon, Gooseon;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.391-400
    • /
    • 2017
  • Geo-based application services linked with the Open Geospatial Consortium (OGC) Web Processing Service (WPS) protocol have been regarded as an important standardized framework for of digital earth building in the web environments. The WPS protocol provides interface standards for analysis functionalities within geo-spatial processing in web-based service systems. Despite its significance, there is few performance tests of WPS applications. The main motivation in this study is to perform the comparative performance test on WPS standards. Test system, which was composed of WPS servers, WPS framework, data management module, geo-based data processing module and client-sided system, was implemented by fully open source stack. In this system, two kinds of geo-based image processing functions such as cloud detection and gradient magnitude computation were applied. The performance test of different server environments of non-WPS, synchronous WPS 1.0 and asynchronous WPS 2.0 was carried out using 100 threads and 400 threads corresponds client users on a web-based application service. As the result, at 100 threads, performance of three environments was within an adjacent range in the average response time to complete the processing of each thread. At 400 threads, the application case of WPS 2.0 showed the distinguished characteristics for higher performance in the response time than the small threads cases. It is thought that WPS 2.0 contributes to settlement of without performance problems such as time delay or thread accumulation.

Performance Based Seismic Design State of Practice, 2012 Manila, Philippines

  • Sy, Jose A.;Anwar, Naveed;HtutAung, Thaung;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The purpose of this paper is to present the state of practice being used in the Philippines for the performance-based seismic design of reinforced concrete tall buildings. Initially, the overall methodology follows "An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region, 2008", which was developed by Los Angeles Tall Buildings Structural Design Council. After 2010, the design procedure follows "Tall Buildings Initiative, Guidelines for Performance-Based Seismic Design of Tall Buildings, 2010" developed by Pacific Earthquake Engineering Research Center (PEER). After the completion of preliminary design in accordance with code-based design procedures, the performance of the building is checked for serviceable behaviour for frequent earthquakes (50% probability of exceedance in 30 years, i.e,, with 43-year return period) and very low probability of collapse under extremely rare earthquakes (2% of probability of exceedance in 50 years, i.e., 2475-year return period). In the analysis, finite element models with various complexity and refinements are used in different types of analyses using, linear-static, multi-mode pushover, and nonlinear-dynamic analyses, as appropriate. Site-specific seismic input ground motions are used to check the level of performance under the potential hazard, which is likely to be experienced. Sample project conducted using performance-based seismic design procedures is also briefly presented.

Comparison of Knee Extensor and Hip Extensor Strength According to Wall Squat Performance

  • Jung, Sung-hoon;Kim, Moon-hwan;Hwang, Ui-jae;Kim, Jun-hee;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.24 no.1
    • /
    • pp.79-85
    • /
    • 2017
  • Background: The wall squat is considered an effective exercise because it can reduce the knee load and prevent excessive lumbar movement. However, the relationship between wall squat performance and strength of knee extensors and hip extensors remained unclear. Objects: The purpose of this study was to compare the strengths of the knee extensors and hip extensors between groups with low and high wall squat performance. Method: Nineteen males (low performance group: 9 subjects, high performance group: 10 subjects) participated in this study and performed wall squats. The subjects who were performing less than 30% of the average wall squat count were classified into the low wall squat performance group (less than or equal to 4 times) and the subjects who performed more than 30% of the average wall squat count were classified into the high wall squat performance group (greater than or equal to 8 times). Knee extensor and hip extensor strength were measured with a strength measurement system. An independent t-test was used to compare the strengths of the knee extensors and hip extensors between the groups with low and high wall squat performance. Results: The ratios of knee extensor and hip extensor strength to bodyweight were greater in the high wall squat performance group than in the low wall squat performance group (knee extensors: p<.001; hip extensors: p=.03). In the high- and low-performance groups, the ratios of knee extensor strength to bodyweight were $42.74{\pm}5.72$ and $30.76{\pm}8.54$, respectively, and the ratios of hip extensor strength to bodyweight were $31.95{\pm}10.61$ and $20.66{\pm}11.25$, respectively. Conclusion: Our findings suggest that knee extensor and hip extensor strength are needed for high wall squat performance. Thus, exercise to increase the knee and hip extensors strength can be recommended to improve squat performance.

Design of Reliability Qualification Test Based on Performance Distribution at the Earlier Stage (초기 단계의 성능분포를 활용한 신뢰성 인증시험의 설계)

  • Jeong, Hai-Sung
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.131-138
    • /
    • 2012
  • A design of reliability qualification test based on performance distribution is developed. In general, the performance of an item degrades as the time goes by and the failure of an item occurs when the performance degradation reaches the pre-determined critical level. This article considers the reliability qualification test based on a more tightened critical value at the earlier stage to reduce the evaluation testing time and cost. A numerical example is provided to illustrate how to use the developed reliability qualification test.

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of the Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Quantifying Risk Factors on Cost Performance By Characterizing Capital Facility Projects

  • Jang, Myung-Hoon;Cha, Hee-Sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.4
    • /
    • pp.177-183
    • /
    • 2006
  • Risk-based estimation has been successfully introduced into the construction industry. By incorporating historical data associated with probability analysis, risk-based estimate is an effective decision support aid in considering whether to launch a particular project. The industry challenges, however, especially related with management issues, such as labor shortage, wage growth, and supply chain complexity, have often resulted in poor cost performance. The insufficient assessing the project characteristics (i.e., resource availability, project complexity, and project delivery method) can be the main reasons in the poor cost performance. Because the accuracy level of cost performance prediction can be enhanced by extensive evaluation of the subject project characteristics, a new approach for predicting cost performance in an earlier stage of a project can improve the Industry substantiality, in other words, value maximization. The purpose of this paper is to develop a new methodology in developing a risk-based estimate tool by incorporating extensive project characteristics. To do this, an extensive industry survey was conducted from both private and public sectors in building industry in Korea. In addition, significant project characteristics were identified in terms of cost performance indicator. Although the data collection is limited to Korean industry the suggested approach provides the industry with a straightforward methodology in risk management. As many researchers maintained that front-end planning efforts are crucial in achieving the successful outcome in building projects, the new method for risk-based estimation can Improve the cost performance as well as enhance the fulfillment in terms of business sustainability.

Communication Performance of BLE-based IoT Devices and Routers for Tracking Indoor Construction Resources

  • Yoo, Moo-Young;Yoo, Sung Geun;Park, Sangil
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.27-38
    • /
    • 2019
  • Sensors collect information for Internet of Things (IoT)-based services. However, indoor construction sites have a poor communication environment and many interfering elements that make it difficult to collect sensor information. In this study, a network was constructed between a Bluetooth Low Energy (BLE)-based IoT device based on a serverless IoT framework and a router. This experimental environment was applied to large- and small-scale indoor construction sites. Experiments were performed to test the communication performance of BLE-based IoT devices and routers at indoor construction sites. An analysis of the received signal strength indication (RSSI) graph patterns collected from the communication between the BLE-based IoT devices and routers for different testbed site situation revealed areas with good communication performance and poor communication performance due to interfering factors. The results confirmed that structural components of the building as well as the materials, equipment, and temporary facilities used in indoor construction interfere with the communication performance. Construction project managers will require improved technical knowledge of IoT, such as optimizing the router placement and matching communication between the router and workers, to improve the communication performance for large-scale indoor construction.

A performance-based design method for chloride-induced cover cracking of RC structures

  • Yang, Dong-Hui;Yi, Ting-Hua;Li, Hong-Nan
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.573-582
    • /
    • 2017
  • Chloride-induced cover cracking will aggravate the performance deterioration for RC structures under the chlorideladen environment, which may endanger the safety of structures and occupants. Traditional design method cannot ensure that a definite performance is satisfied. To overcome the defects, a study on the performance-based design method was carried out in this paper. Firstly, the limit state functions were established for the corrosion initiation and cover cracking. Thereafter, the uncertainty analysis was performed to study the effects of random factors on the time-dependent performances. Partial factor formulae were deduced through the first-order reliability method for performance verification. Finally, an illustrative example was presented and the sensitivity of cover depth to other parameters was carried out. It is found that the uncertainties of the random variables have great effects on the required cover depth. It is demonstrated that the performance-based design method can ensure that the target performance can be satisfied and support to formulate a rational maintenance and repair strategy for RC structures under the chloride environment.

Performance Analysis of Hybrid Location Update Strategy in Wireless Communication System (이동 통신망에서의 혼합형 위치 갱신 방법의 성능분석)

  • Lee, Goo-Yeon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.191-198
    • /
    • 2006
  • In this paper, we focus on a question. Which is better between time-based location update method and movement-based location update method? Or, does any other method combining the two methods show better performance? For the question, we propose a hybrid location update scheme, which integrates the time-based and the movement-based methods. In the proposed scheme, a mobile terminal updates its location after n cell boundary crossing and a time interval of T, or the inverse. We derive an analytical solution for the performance of the hybrid scheme with exponential cell resident time. From the numerical analysis, we conclude that the movement-based method seems to have better performance than the time-based and hybrid methods, that is the optimal costs occur at T=0.

  • PDF