• Title, Summary, Keyword: peptides

Search Result 1,261, Processing Time 0.048 seconds

The Influence of Mixed Solvents Volatility on Charge State Distribution of Peptides During Positive Electrospray Ionization Mass Spectrometry

  • Nielsen, Birthe V.;Abaye, Daniel A.;Nguyen, Minh T.L.
    • Mass Spectrometry Letters
    • /
    • v.8 no.2
    • /
    • pp.29-33
    • /
    • 2017
  • Understanding the mechanisms that control and concentrate the observed electrospray ionisation (ESI) response from peptides is important. Controlling these mechanisms can improve signal-to-noise ratio in the mass spectrum, and enhances the generation of intact ions, and thus, improves the detection of peptides when analysing mixtures. The effects of different mixtures of aqueous: organic solvents (25, 50, 75%; v/v): formic acid solution (at pH 3.26) compositions on the ESI response and charge-state distribution (CSD) during mass spectrometry (MS) were determined in a group of biologically active peptides (molecular wt range 1.3 - 3.3 kDa). The ESI response is dependent on type of organic solvent in the mobile phase mixture and therefore, solvent choice affects optimal ion intensities. As expected, intact peptide ions gave a more intense ESI signal in polar protic solvent mixtures than in the low polarity solvent. However, for four out of the five analysed peptides, neither the ESI response nor the CSD were affected by the volatility of the solvent mixture. Therefore, in solvent mixtures, as the composition changes during the evaporation processes, the $pK_b$ of the amino acid composition is a better predictor of multiple charging of the peptides.

Specificity in the Inhibition of Mucin Release from Airway Goblet Cells by Polycationic Peptides (호흡기 배상세포에서 폴리양이은성 펩티드에 의해 야기되는 뮤신유리 억제 현상의 특이성 규명 Specificity in the Inhibition of Mucin Release from Airway Goblet Cells by Polycationic Peptides)

  • 이충재
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.218-223
    • /
    • 2001
  • In the present study, we intended to investigate whether polycationic peptides including poly-L-lysine (PLL) and poly-L-arginine (PLA) specifically inhibit the mucin release and do not affect significantly the release of the other releasable glycoproteins with less molecular weight than mucin's from cultured airway goblet cells. Confluent primary hamster tracheal surface epithelial (HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24 hr and chased for 30 min in the presence of varying concentrations of either poly-L-arginine (PLA) or poly-L-lysine (PLL) to assess the effects on 3H-mucin release and on the total elution profile of the treated culture medium. The results were as follows : (1) PLL 78,000, PLL 9,600 and PLA 8,900 inhibited mucin release in a dose-dependent manner; (2) These polycationic peptides did not inhibit the release of the other releasable glycoproteins with less molecular weights than mucin's. We conclude that these polycationic peptides 'specifically'inhibit mucin release from airway goblet cells. This finding suggests that these polycationic peptides might be used as a specific airway mucin-regulating agent.

  • PDF

Purification and Characterization of Antioxidative Peptides from Bovine Skin

  • Kim, Se-Kwon;Kim, Yong-Tae;Byun, Hee-Guk;Park, Pyo-Jam;Ito, Hisashi
    • BMB Reports
    • /
    • v.34 no.3
    • /
    • pp.219-224
    • /
    • 2001
  • To identify the antioxidative peptides in the gelatin hydrolysate of bovine skin, the gelatin was hydrolyzed with serial digestions in the order of Alcalase, pronase E, and collagenase using a three-step recycling membrane reactor. The second enzymatic hydrolysate (hydrolyzed with pronase E) was composed of peptides ranging from 1.5 to 4.5 kDa, and showed the highest antioxidative activity, as determined by the thiobarbituric acid method. Three different peptides were purified from the second hydrolysate using consecutive chromatographic methods. This included gel filtration on a Sephadex G-25 column, ion-exchange chromatography on a SP-Sephadex C-25 column, and high-performance liquid chromatography on an octadecylsilane chloride column. The isolated peptides were composed of 9 or 10 amino acid residues. They are: Gly-Glu-Hyp-Gly-Pro-Hyp-Gly-Ala-Hyp (PI), Gly-ProHyp-Gly-Pro-Hyp-Gly-Pro-Hyp-Gly (PII), and Gly-ProHyp-Gly-Pro-Hyp-Gly-Pro-Hyp (PIII), as characterized by Edman degradation and fast-atom bombardment mass spectrometry. The antioxidative activities of the purified peptides were measured using the thiobarbituric acid method, and the cell viability with a methylthiazol tetrazolium assay The results showed that PII had potent antioxidative activity on peroxidation of linoleic acid. Moreover, the cell viability of cultured liver cells was significantly enhanced by the addition of the peptide. These results suggest that the purified peptide, PII, from the gelatin hydrolysate of bovine skin is a natural antioxidant, which has potent antioxidative activity.

  • PDF

Role of Amino Acid Residues within the Disulfide Loop of Thanatin, a Potent Antibiotic Peptide

  • Lee, Myung-Kyu;Cha, Li-Na;Lee, Si-Hyung;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.291-296
    • /
    • 2002
  • Thanatin, a 21-residue peptide, is an inducible insect peptide with a broad range of activity against bacteria and fungi. It has a C-terminal disulfide loop, like the frog skin secretion antimicrobial peptides of the brevinin family. In this study, we tried to find the effect of a number of amino acids between the disulfide bond. Thanatin showed stronger antibacterial activity to Gram negative bacteria than other mutants, except Th1; whereas, the mutant peptides with deletion had higher activity to Gram positive bacteria than thanatin. An increase in the number of amino acid(s) using the alanine residue decreased the antibacterial activity in all of the bacteria. Th1 with deletion of threonine at position 15 ($Thr^{15}$) showed similar antibacterial activity against Gram-negative bacteria, but had higher activity against the Gram positive bacteria. In order to study the structure-function relationship, we measured liposome disruption by the peptides and CD spectra of the peptides. Th1 also showed the highest liposome leaking activity and α-helical propensity in the sodium dodecyl sulfate solution, compared with other peptides. Liposome disruption activity was closely correlated with the anti-Gram positive bacterial activity. All of the peptides showed no hemolytic activity. Th1 was considered to be useful as an antimicrobial peptide with broad spectrum without toxicity.

Antimicrobial Peptides Derived from the Marine Organism(s) and Its Mode of Action (해양 생물 유래의 항균 펩타이드 및 작용 기작)

  • Hwang, Bo-Mi;Lee, June-Young;Lee, Dong-Gun
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • Recently, marine organisms are emerging as a leading group for identifying and extracting novel bioactive substances. These substances are known to possess a potential regarding not only as a source of pharmaceutical products but also their beneficial effects on humans. Among the substances, antimicrobial peptides (AMPs) specifically have attracted considerable interest for possible use in the development of new antibiotics. AMPs are characterized by relatively short cationic peptides containing the ability to adopt a structure in which cationic or hydrophobic amino acids are spatially scattered. Although a few reports address novel marine organisms-derived AMPs, their antimicrobial mechanism(s) are still remain unknown. In this review, we summarized the peptides previously investigated, such as Pleurocidin, Urechistachykinins, Piscidins and Arenicin-1. These peptides exhibited significant antimicrobial activities against human microbial pathogens without remarkable hemolytic effects against human erythrocytes, and their mode of actions are based on permeabilization of the plasma membrane of the pathogen. Therefore, the study of antimicrobial peptides derived from marine organisms may prove to be useful in the design of future therapeutic antimicrobial drugs.

Reduction of Interlukin-8 by Peptides from Digestive Enzyme Hydrolysis of Hen Egg Lysozyme

  • Lee, MooHa;Young, Denise;Mine, Yoshinori;Jo, CheoRun
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.706-711
    • /
    • 2009
  • Lysozyme was treated with digestive enzymes and the production of interleukin 8 (IL-8) was measured in Caco-2 cell with the peptides from lysozyme upon stimulating with lipopolysaccharide (LPS) to investigate the overall anti-inflammatory activity of lysozyme when it is in digestive tracts. Lysozyme reduced IL-8 production, and the peptides from pepsin hydrolysis of lysozyme had the similar effect. The products of trypsin digestion of lysozyme had no effect on the reduction of IL-8 production while those of pepsin-trypsin hydrolysis did. The effectiveness of lowering IL-8 production was not different by time of the peptide addition. When Caco-2 cells were pre-incubated with peptides for 24 hr, the reduction effects were observed from the peptides from pepsin hydrolysis, indicating that some of the peptides are still remaining in the cells. Therefore, it can be concluded that the IL-8 reduction effect of lysozyme against LPS still remained even after the pepsin and trypsin hydrolysis.

Storage Stability of the Synthetic Angiotensin Converting Enzyme (ACE) Inhibitory Peptides Separated from Beef Sarcoplasmic Protein Extracts at Different pH, Temperature, and Gastric Digestion

  • Jang, Ae-Ra;Jo, Cheo-Run;Lee, Moo-Ha
    • Food Science and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.572-575
    • /
    • 2007
  • The angiontensin converting enzyme (ACE) inhibitory peptides were separated from beef sarcoplasmic protein extract and their amino acid sequences were identified as GFHI, DFHINQ, FHG, and GLSDGEWQ. The 4 peptides were synthesized in a laboratory and the ACE inhibitory activities of pep tides was measured after 2 months of storage at $4^{\circ}C$ under different pH conditions (6.0, 6.5, 7.0, 7.5, and 8.0) and the exposure of different temperatures (70, 80, 90, and $100^{\circ}C$) for 20 min to evaluate industrial use. No significant difference was detected by pH and temperature abuse for 20 min during storage. When the synthetic peptides were digested by pepsin, trypsin, and chymotrypsin, the ACE inhibitory activity was not changed. These results indicated that the 4 synthetic peptides with ACE inhibitory activity were pH-stable, heat-stable, and resistant to proteinases in gastro-intestinal tracts. Therefore, those 4 peptides can be used as a source for functional food product with various applications.

Identification of AGE-precursors and AGE formation in glycation-induced BSA peptides

  • Ahmad, Waqar;Li, Lili;Deng, Yulin
    • BMB Reports
    • /
    • v.41 no.7
    • /
    • pp.516-522
    • /
    • 2008
  • The glycation of BSA leads to protein/peptide modifications that result in the formation of AGEs. AGEs react with the amino groups of N-terminal amino acid residues, particularly arginine and lysine residues. Enhanced AGE formation exists in the blood and tissues of diabetics, as well as in aging and other disorders. The Identification of AGEs is of great importance. Mass spectrometry has been applied to identify and structurally elucidate AGEs. Here, we report on the identification of AGE-peptides and AGE precursors based on relative mass changes as a result of specific AGE formation. HPLC-ESIMS, ESI-MS/MS, and the Mascot database were used. The relative mass changes due to the specific type of AGE formation were added to the identified peptides followed by a manual search of the glycated samples, which resulted in the identification of seven peptides for the formation of five AGEs, namely CML, pyrraline, imidazolone A, imidazolone B, and AFGP. Four glycated peptides (FPK, ECCDKPLLEK, IETMR, and HLVDEPQNLIK) were identified in the formation of AGE-precursors.

Portal Absorption of Feed Oligo-peptides in Chickens

  • Wang, Lijuan;Ma, Qiugang;Cheng, Ji;Guo, Baohai;Yue, Hongyuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1277-1280
    • /
    • 2004
  • The effect of duodenal infusion with feed oligo-peptide solution on portal absorption of amino acids was investigated in poultry under unanaesthetized conditions. Four peptide solutions were used in the experiment: enzymatic hydrolysates from fish meal, soybean meal, cottonseed meal and rapeseed meal proteins with average molecular weights less than 3,000 Da and 1,000 Da, respectively. Intestinal absorptions of these oligo-peptide solutions were compared by determining the concentration of free amino acid (FAA) in portal blood after the duodenal administrations of oligo-peptide solutions. Absorptive intensity and balance were used to estimate the intestinal absorption rate of amino acids. The absorptive intensities of amino acids were highest for the fish and soybean meal oligo-peptides. The ratios of amino acids absorbed in the portal blood from fish and soybean meal oligo-peptides were more similar to the composition of the infused amino acids than that observed from the cottonseed and rapeseed meal oligo-peptides. A positive correlation was found between absorption rate and proportion of PAA in the oligo-peptides. The higher absorption rate could be contributed to the higher proportion of peptide bound amino acids (PAA). The results suggest that fish and soybean meal protein are significantly more easily hydrolyzed into oligo-peptides (p<0.05) in the gastrointestinal tracts of poultry and as such can be utilized more effectively by body tissues.

Antiangiogenic Activity of the Lipophilic Antimicrobial Peptides from an Endophytic Bacterial Strain Isolated from Red Pepper Leaf

  • Jung, Hye Jin;Kim, Yonghyo;Lee, Hyang Burm;Kwon, Ho Jeong
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.273-278
    • /
    • 2015
  • The induction of angiogenesis is a crucial step in tumor progression, and therefore, efficient inhibition of angiogenesis is considered a powerful strategy for the treatment of cancer. In the present study, we report that the lipophilic antimicrobial peptides from EML-CAP3, a new endophytic bacterial strain isolated from red pepper leaf (Capsicum annuum L.), exhibit potent antiangiogenic activity both in vitro and in vivo. The newly obtained antimicrobial peptides effectively inhibited the proliferation of human umbilical vein endothelial cells at subtoxic doses. Furthermore, the peptides suppressed the in vitro characteristics of angiogenesis such as endothelial cell invasion and tube formation stimulated by vascular endothelial growth factor, as well as neovascularization of the chorioallantoic membrane of growing chick embryos in vivo without showing cytotoxicity. Notably, the angiostatic peptides blocked tumor cell-induced angiogenesis by suppressing the expression levels of hypoxia-inducible $factor-1{\alpha}$ and its target gene, vascular endothelial growth factor (VEGF). To our knowledge, our findings demonstrate for the first time that the antimicrobial peptides from EML-CAP3 possess antiangiogenic potential and may thus be used for the treatment of hypervascularized tumors.