• Title, Summary, Keyword: pendulum type

Search Result 129, Processing Time 0.034 seconds

Development of a Pendulum-driven Type Spherical Mobile Robot (진자 구동 방식의 구형 이동 로봇 개발)

  • Kim, Ja-Young;Kwon, Hyok-Jo;Kim, Dae-Hyun;Choi, Hee-Byoung;Lee, Ji-Hong
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.124-126
    • /
    • 2009
  • In this paper a pendulum-driven type spherical mobile robot is introduced. Many researchers have been studied about a spherical mobile robot. we developed a pendulum-driven type spherical mobile robot and analyzed mechanism of pendulum motion. Mechanism of pendulum motion applied to the robot. Consequently, we could verify the motion of the robot as motion of pendulum.

  • PDF

Implement of the inverted pendulum system of cart type via PID control method (카트형 역진자 시스템에 대한 PID제어)

  • Cho, Hyung-Min;Kim, Min-Soo;Dang, Hyo-Jin;Lee, Seung-Hoon;Park, Myung-Jin;Kwon, Oh-Min
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.85-86
    • /
    • 2015
  • This paper is to study the inverted pendulum system of cart type by using the method of PID control. This system is that inverted pendulum maintain a constant balance from unstable state by moving a cart. It is controlled via the PID controller. PID controller is proposed to maintain a constant balance for nonlinear system such as the inverted pendulum system so PID control is widely used in the industrial field because of superior control performance, easy implementation and relatively simple structure. To design this system, it consist of Encorder and DC motor. Encorder is used to read the angle of the pendulum and DC motor is used to change the angle. We can verify results of experiment through the Matlab simulator via the inverted pendulum system of cart type.

  • PDF

Base isolation performance of a cone-type friction pendulum bearing system

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Sung-Wan;Kim, Nam-Sik
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.227-248
    • /
    • 2015
  • A CFPBS (Cone-type Friction Pendulum Bearing System) was developed to control the acceleration delivered to a structure to prevent the damage and degradation of critical communication equipment during earthquakes. This study evaluated the isolation performance of the CFPBS by numerical analysis. The CFPBS was manufactured in the shape of a cone differenced with the existing FPS (Friction Pendulum System), and a pattern was engraved on the friction surface. The natural frequencies of the CFPBS were evaluated from a free-vibration test with a seismic isolator system consisting of 4 CFPBS. To confirm the earthquake-resistant performance, a numerical analysis program was prepared using the equation of the CFPBS induced from the equations of motion. The equation reported by Tsai for the rolling-type seismic isolation bearings was proposed to design the equation of the CFPBS. Artificial seismic waves that satisfy the maximum earthquake scale of the Korean Building Code-Structural (KBC-2005) were created and verified to review the earthquake-resistant performance of the CFPBS by numerical analysis. The superstructural mass of the CFPBS and the skew angle of friction surface were considered for numerical analysis with El Centro NS, Kobe NS and artificial seismic waves. The CFPBS isolation performance evaluation was based on the numerical analysis results, and comparative analysis was performed between the results from numerical analysis and simplified theoretical equation under the same conditions. The validity of numerical analysis was verified from the shaking table test.

Hybrid control of rotary type inverted pendulum by using one-chip microcomputer (One-chip 마이크로 컴퓨터에 의한 회전형 도립 진자의 hybrid 제어)

  • 김환성;김상봉
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.999-1003
    • /
    • 1992
  • In the paper, a hybrid control approach for the swing-up control of a rotary type inverted pendulum is treated using one-chip microcomputer. The control approach is composed by a scheduling logic control for swing up control and the linear state feedback control to achieve the disired inverted-state of the pendulum. The experimental cystem has been implemented by a 16-bit one-chip microcomputer with 3096 opu as the digital controller incorporating the above mentioned control approach.

  • PDF

A study on Fuzzy-PID Control of a Straight Line Type Inverted Pendulum (직선형 도립 진자의 퍼지-PID 제어에 관한 연구)

  • Kim, J.M.;Lee, S.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.57-64
    • /
    • 1994
  • This paper proposes a fuzzy tuning PID controller for straight line type inverted pendulum. The conventional PID controller which is used widely in industrial field has fatal drawback on determining control gains for practical system. The proposed controller tunes the gains automatically based on fuzzy urle derived from the experience of expert operator. The results of simulation and experiment show the efficiency of the proposed control method comparing with conventional PID control method in terms of rising time, overshoot, and overall errors.

  • PDF

Experimental Study on Floor Isolation of Main Control Room of Nuclear Power Plant using FPS(Friction Pendulum System) (마찰진자베어링(FPS) 면진시스템을 적용한 원전주제어실의 진동대 실험)

  • Lee, Kyung-Jin;Ham, Kyung-Won;Suh, Yong-Pyo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • /
    • pp.445-452
    • /
    • 2005
  • The seismic characteristics with Friction Pendulum System have been studied using a shaking table system. In this study, we made two kind of floor system (Type I, Type II) and several seismic tests with and without isolation system were conducted to evaluate floor isolation effectiveness of Friction Pendulum System. Both type have showed large reduction effectiveness in acceleration, response spectra but Type II have showed lower acceleration and lower first mode in response spectra, compared to type I. On the basis of test results and consideration of application, it is found that type II is more suitable for floor model of main control room of Nuclear Power Plant.

  • PDF

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.599-608
    • /
    • 2011
  • FPS(friction pendulum system) is an isolation system which is possible to isolate structures from earthquake by pendulum characteristic. Natural frequencies of the structures could be determined by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(cone-type friction pendulum bearing system) was developed for controlling the acceleration and displacement of structure by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, superstructures on CFPBS could be isolated from earthquake. In this study, seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

Seismic Performance Evaluation of Cone-type Friction Pendulum Bearing System Using Shaking Table Test (진동대실험을 통한 원추형 마찰진자베어링의 내진성능 평가)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Nam-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.389-394
    • /
    • 2011
  • Existing FPS(Friction Pendulum System) is isolation system which is possible to isolate structures by pendulum characteristic from ground vibration. Structural natural frequency could be decided by designing the radius of curvature of FPS. Thus, response vibration could be reduced by changing natural frequency of structures from FPS. But effective periods of recorded seismic wave were various and estimation of earthquake characteristic could be difficult. If effective periods of seismic wave correspond to natural frequency of structures with FPS, resonance can be occurred. Therefore, CFPBS(Cone-type Friction Pendulum Bearing System) was developed for controlling the response acceleration and displacement by the slope of friction surfaces. Structural natural frequency with CFPBS can be changed according to position of ball on the friction surface which was designed cone-type. Therefore, Divergence of response could be controlled by CFPBS which had constantly changing natural frequency with low modal participation factor in wide-range. In this study, Seismic performance of CFPBS was evaluated by numerical analysis and shaking table test.

  • PDF

Controller Design of Two Wheeled Inverted Pendulum Type Mobile Robot Using Neural Network (신경회로망을 이용한 이륜 역진자형 이동로봇의 제어기 설계)

  • An, Tae-Hee;Kim, Yong-Baek;Kim, Young-Doo;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.536-544
    • /
    • 2011
  • In this paper, a controller for two wheeled inverted pendulum type robot is designed to have more stable balancing capability than conventional controllers. Traditional PID control structure is chosen for the two wheeled inverted pendulum type robot, and proper gains for the controller are obtained for specified user's weights using trial-and-error methods. Next a neural network is employed to generate PID controller gains for more stable control performance when the user's weight is arbitrarily selected. Through simulation studies we find that the designed controller using the neural network is superior to the conventional PID controller.