• Title, Summary, Keyword: optimal assignment

Search Result 311, Processing Time 0.044 seconds

A Weapon Assignment Algorithm Using the Munkres Optimal Assignment Method (Munkres 최적할당 기법을 적용한 무기할당 알고리즘)

  • Kim, Ji-Eun;Shin, Jin-Hwa;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • This paper presents global and optimal solution for weapon assignment problems using the Munkres assignment algorithm. We propose a new modeling method of weapon assignment problems concerning some constraints of weapon systems. In this paper, we compares the Munkres weapon assignment algorithm with two other algorithms employing a search tree model in terms of computational complexity and performance. One is an optimal algorithm using exhausted search and the other is a greedy algorithm which selects the first search result as a solution. The experiment results show that the Munkres weapon assignment algorithm has better performance and less computational complexity in comparison with the two other algorithms.

The Optimal Algorithm for Assignment Problem (할당 문제의 최적 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.139-147
    • /
    • 2012
  • This paper suggests simple search algorithm for optimal solution in assignment problem. Generally, the optimal solution of assignment problem can be obtained by Hungarian algorithm. The proposed algorithm reduces the 4 steps of Hungarian algorithm to 1 step, and only selects the minimum cost of row and column then gets the optimal solution simply. For the 27 balanced and 7 unbalanced assignment problems, this algorithm finds the optimal solution but the genetic algorithm fails to find this values. This algorithm improves the time complexity O($n^3$) of Hungarian algorithm to O(n). Therefore, the proposed algorithm can be general algorithm for assignment problem replace Hungarian algorithm.

A Method for Optimal Power Assignment of the Transponder Input Carriers in the Multi-level & Multi-bandwidth System (Multi-level & Multi-bandwidth 시스템에서 위성중계기 입력반송파 전력의 최적 할당 기법)

  • 김병균;최형진
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1167-1176
    • /
    • 1995
  • This paper suggests a method for optimal power assignment of the satellite transponder input carriers in the Multi-level & Multi-bandwidth system. The interference and the noise effects analyzed for the optimal power assignment are intermodulation product caused by the nonlinear transponder characteristics, adjacent channel interference, co-channel interference, and thermal noise in the satellite link. The Fletcher- Powell algorithm is used to determine the optimal input carrier power. The performance criteria for optimal power assignment is classified into 4 categories according to the CNR of destination receiver earth station to meet the requirement for various satellite link environment. We have performed mathematical analysis of objective functions and their derivatives for use in the Fletcher-Powell algorithm, and presented various simulation results based on mathematical analysis. Since the satellite link, it is meaningful to model and analyze these effects in a unified manner and present the method for optimal power assignment of transponder input carriers.

  • PDF

An Assignment Problem Algorithm Using Minimum Cost Moving Method

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.8
    • /
    • pp.105-112
    • /
    • 2015
  • Generally, the optimal solution of assignment problem has been obtained by Hungarian algorithm with O($n^3$) time complexity. This paper proposes more simple algorithm with O($n^2$) time complexity than Hungarian algorithm. The proposed algorithm simply selects minimum cost in each row, and classified into set S, H, and T. Then, the minimum cost is moved from S to T and $S{\rightarrow}H$, $H{\rightarrow}T$. The proposed algorithm can be obtain the same optimal solution as well-known algorithms and improve the optimal solution of partial unbalanced assignment problems.

An Linear Bottleneck Assignment Problem (LBAP) Algorithm Using the Improving Method of Solution for Linear Minsum Assignment Problem (LSAP)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.131-138
    • /
    • 2016
  • In this paper, we propose a simple linear bottleneck assignment problems (LBAP) algorithm to find the optimal solution. Generally, the LBAP has been solved by threshold or augmenting path algorithm. The primary characteristic of proposed algorithm is derived the optimal solution of LBAP from linear sum assignment problem (LSAP). Firstly, we obtains the solution for LSAP from the selected minimum cost of rows and moves the duplicated costs in row to unselected row with minimum increasing cost in direct and indirect paths. Then, we obtain the optimal solution of LBAP according to the maximum cost of LSAP can be move to less cost. For the 29 balanced and 7 unbalanced problem, this algorithm finds optimal solution as simple.

One-Sided Optimal Assignment and Swap Algorithm for Two-Sided Optimization of Assignment Problem

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.75-82
    • /
    • 2015
  • Generally, the optimal solution of assignment problem can be obtained by Hungarian algorithm of two-sided optimization with time complexity $O(n^4)$. This paper suggests one-sided optimal assignment and swap optimization algorithm with time complexity $O(n^2)$ can be achieve the goal of two-sided optimization. This algorithm selects the minimum cost for each row, and reassigns over-assigned to under-assigned cell. Next, that verifies the existence of swap optimization candidates, and swap optimizes with ${\kappa}-opt({\kappa}=2,3)$. For 27 experimental data, the swap-optimization performs only 22% of data, and 78% of data can be get the two-sided optimal result through one-sided optimal result. Also, that can be improves on the solution of best known solution for partial problems.

An Optimal Surveillance Units Assignment Model Using Integer Programming (정수계획법을 이용한 최적 감시장비 배치모형에 관한 연구)

  • 서성철;정규련
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.14-24
    • /
    • 1997
  • This study is to develop an optimal surveillance units assignment model in order to obtain the maximized surveillance efficiency with the limited surveillance units. There are many mathematical models which deal with problems to assign weapons such as aircrafts, missiles and guns to targets. These models minimize the lost required to attack, the threat forecast from the enemy, or both of them. However, a problem of the efficient assignment of surveillance units is not studied yet, nevertbless it is important in the battlefield surveillance system. This paper is concerned with the development of the optimal surveillance units assignment model using integer programming. An optimal integer solution of the model can be obtained by using linear programming and branch and bound method.

  • PDF

Optimal Storage Capacity under Random Storage Assignment and Class-based Assignment Storage Policies (임의 저장 방식과 급별 저장 방식하에서의 최적 저장 규모)

  • Lee, Moon-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.274-281
    • /
    • 1999
  • In this paper, we determine the required storage capacity of a unit-load automated storage/retrieval system(AS/RS) under random storage assignment(RAN) and n-class turnover-based storage assignment(CN) policies. For each of the storage policies, an analytic model to determine the optimal storage capacity of the AS/RS is formulated so that the total cost related to storage space and space shortage is minimized while satisfying a desired service level. A closed form of optimal solutions for the RAN policy is derived from the model. For the CN policy, an optimal storage capacity is shown to be determined by applying the existing iterative search algorithm developed for the full turnover-based storage(FULL) policy. Finally, an application of the approach to the standard economic-order-quantity inventory model is provided.

  • PDF

A Study on the Optimal Gate Assignment with Transit Passenger in Hub Airport (허브 공항의 환승객을 고려한 최적 주기장 배정에 관한 연구)

  • Lee Hui Nam;Lee Chang Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • /
    • pp.402-408
    • /
    • 2003
  • Now many major airports in the world which operate strategic alliance or Hub & Spoke system have met capacity restriction and confusion problems. And the time and the walking distance for boarding to flight are important standard to measure customer convenience. And the effective gate assignment guarantees customers convenience as well as increasing airport capacity without expanding established airport equipments. So it can be a major concern to manage airports. So this paper formulate gate assignment problem in the hub airport not quadratic assignment problem but a improved single-period integer problem which is minimize local and transit passengers I walking distance. As a result, this study will present a method producing optimal gate assignment result using optimization software. We use real flights and gates data in the national airport, so we will compare a assignment results with a real airport assignment results and previous researches and analyze those results.

  • PDF

Assignment Problem Algorithm Based on the First Selection Method of the Minimum Cost (최소비용 우선선택 방법에 기반한 할당 문제 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.163-171
    • /
    • 2013
  • This paper proposes an algorithm that seeks the optimal solution for an assignment problem through a simplified process. Generally it is Hungarian algorithm that is prevalently used to solve a given assignment problem. The proposed algorithm reduces 4 steps Hungarian algorithm into 2 steps. Firstly, the algorithm selects the minimum cost from a matrix and deletes the rest of the rows and columns. Secondly, it improves on the solution through reassignment process. For 27 balanced assignment problems and 7 unbalanced problems, the proposed algorithm has successfully yielded the optimal solution, which Genetic algorithm has failed. This algorithm is thus found to be an appropriate replacement of Hungarian algorithm.