• Title/Summary/Keyword: numerical iteration

Search Result 7, Processing Time 0.061 seconds

Numerical Iteration for Stationary Probabilities of Markov Chains

  • Na, Seongryong
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.6
    • /
    • pp.513-520
    • /
    • 2014
  • We study numerical methods to obtain the stationary probabilities of continuous-time Markov chains whose embedded chains are periodic. The power method is applied to the balance equations of the periodic embedded Markov chains. The power method can have the convergence speed of exponential rate that is ambiguous in its application to original continuous-time Markov chains since the embedded chains are discrete-time processes. An illustrative example is presented to investigate the numerical iteration of this paper. A numerical study shows that a rapid and stable solution for stationary probabilities can be achieved regardless of periodicity and initial conditions.

A Closed-Form Solution of Linear Spectral Transformation for Robust Speech Recognition

  • Kim, Dong-Hyun;Yook, Dong-Suk
    • ETRI Journal
    • /
    • v.31 no.4
    • /
    • pp.454-456
    • /
    • 2009
  • The maximum likelihood linear spectral transformation (ML-LST) using a numerical iteration method has been previously proposed for robust speech recognition. The numerical iteration method is not appropriate for real-time applications due to its computational complexity. In order to reduce the computational cost, the objective function of the ML-LST is approximated and a closed-form solution is proposed in this paper. It is shown experimentally that the proposed closed-form solution for the ML-LST can provide rapid speaker and environment adaptation for robust speech recognition.

Multiclass loss systems with several server allocation methods (여러 서버배정방식의 멀티클래스 손실시스템 연구)

  • Na, Seongryong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.4
    • /
    • pp.679-688
    • /
    • 2016
  • In this paper, we study multiclass loss systems with different server allocation methods. The Markovian states of the systems are defined and their effective representation is investigated. The limiting probabilities are derived based on the Markovian property to determine the performance measures of the systems. The effects of the assignment methods are compared using numerical solutions.

A Study on the real-time NURBS Interpolation using 2-stage interpolation (2중 보간법을 이용한 실시간 NURBS 보간방법에 관한 연구)

  • Park Jinho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.6
    • /
    • pp.56-63
    • /
    • 2004
  • The real-time NURBS interpolation method using 2-stage interpolation is studied. The 2-stage interpolation method that compensates for interpolation errors within machine BLU is proposed. The interpolation result was filtered by an Acceleration/Jerk limitation equation. Through this 2-stage interpolation, both the interpolation error condition and the motion kinematics could be satisfied. Using computer simulation in which interpolation results are evaluated by a numerical iteration method, it is shown that the 2-stage interpolation algerian could interpolate target curves precisely with geometric and dynamic contentment. The proposed algorithm was implemented in the CNC simulator system and an experimental un was conducted to identify the real-time adaptation.

Characteristics Analysis of Single Phase Induction Motor via Equivalent Circuit Method and Considering Saturation Factor

  • Cho, Su-Yeon;Kim, Won-Ho;Jin, Chang-Sung;Kang, Dong-Woo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.178-183
    • /
    • 2014
  • This paper presents a motor characteristics analysis method using an equivalent circuit. Motor characteristics analysis via equivalent circuit is very important for designing a high efficiency single phase induction motor. The accuracy of the motor characteristics depends on the accuracy of the parameters, especially saturation factor, which determines the cyclical relationship in the analysis process. Therefore, using the proposed method, the saturation factor was calculated using the iteration routine and numerical technique. The proposed method was verified by comparing the finite element method results and the dynamo test results of manufactured prototype model.

A Study on Self-Excited characteristic for stable operation of Three-Phase Induction Generator (3상유도발전기의 안정된 동작을 위한 자기여자현상에 대한 연구)

  • Cho, Y.R.;Maeng, I.J.;Baek, S.H.;Lee, K.Y.;Kim, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.26-28
    • /
    • 2005
  • Induction generator is the most common generator in wind energy systems because of its simplicity, ruggedness, little maintenance, price and etc. But the main drawbacks in induction generator is its need of reactive power means to build up the terminal voltage. This drawback is not an obstacle today where PWM inverters can accurately supplies the induction generator with its need from reactive power. For a insurance of three-phase induction generator requires capacitive reactance of the terminal. Most of previous work uses numerical iterative method to determine this minimum capacitor. But the numerical iteration takes long time and divergence may be occurs. In this paper is presented the design methods of the minimum self-excited capacitor required for induction generator operation. And a new formula from the equivalent circuit for stable generation operation of self-excited induction generator calculates the proper capacity to obtain the terminal voltage of the load stage. The validity of proposed design methods is confirmed by experimental and computed results.

  • PDF

Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달 Model과 계수에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.489-495
    • /
    • 2015
  • A fundamental mathematical model for mass transfer processes has been used to understand the air pollution control process in biotrickling filtration and to evaluate the mass transfer coefficients of gas/liquid (trickling liquid), gas/solid (biomass) and liquid/solid based upon experimental results and mathematical model calculations for selected operating conditions. The mass transfer models for the utilization of the steady-state mass balance for gas/liquid, and dynamic mass balance model for gas/solid & liquid/solid in biotrickling filters were established and discussed. The mass transfer model considered the reactor to comprise finite sections, for each of which dynamic mass balances for gas/solid and liquid/solid system were solved by numerical analysis code (numerical iteration). To determine the mass transfer coefficients ($K_La$) of gas/liquid, gas/solid & liquid/solid in a biotrickling filter, the calculation results based upon mass balance equation was optimized to coincide with the experimental results for the selected operating conditions. Finally, this study contributed the development of experimental methods and discussed the mathematical model to determine the mass transfer coefficients in a biotrickling filtration for air pollution control.