• Title, Summary, Keyword: myocardial fibrosis

Search Result 25, Processing Time 0.042 seconds

Effect of Low-Intensity Cardiac Rehabilitation on Cardiac Function and Degree of Fibrosis in a White Rat Acute Myocardial Infarction Model

  • Ji, Sung Ha;Kim, Ki Jong
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.999-1005
    • /
    • 2016
  • The purpose of this study was to investigate the effects of low-intensity cardiac rehabilitation exercise on the cardiac function and the degree of fibrosis in an older white rat model. This study used male Sprague-Dawley white rats that were 50 weeks old. After the acute myocardial infarction induction, Twenty of the rats were randomly allocated into an experimental group and a control group, and each of the groups consisted of 8 rats. In the experimental group, the exercise was conducted for six weeks, 30 minutes a day, five days a week, using a Rotarod treadmill for animals. The degree of myocardial fibrosis was significantly repressed in the experimental group($13.69{\pm}1.90%$) and in the control group($15.67{\pm}1.54%$)(p<0.05). However, fractional shortening and ejection fraction did not show a significant difference. The results of this study suggest that cardiac rehabilitation with low intensity treadmill exercise repress the myocardial fibrosis.

Thymoquinone Prevents Myocardial and Perivascular Fibrosis Induced by Chronic Lipopolysaccharide Exposure in Male Rats - Thymoquinone and Cardiac Fibrosis -

  • Asgharzadeh, Fereshteh;Bargi, Rahimeh;Beheshti, Farimah;Hosseini, Mahmoud;Farzadnia, Mehdi;Khazaei, Majid
    • Journal of Pharmacopuncture
    • /
    • v.21 no.4
    • /
    • pp.284-293
    • /
    • 2018
  • Objectives: Thymoquinone (TQ) is one of the active ingredients of herbal plants such as Nigella sativa L. (NS) which has beneficial effects on the body. The beneficial effects of TQ on the cardiovascular system have reported. This study aimed to investigate the effect of TQ on cardiac fibrosis and permeability, serum and tissue concentration of inflammatory markers and oxidative stress status in chronic lipopolysaccharide exposure in male rats. Methods: Seventy male Wistar rats were randomly divided into five groups as follows: (1) control; (2) LPS (1 mg/kg/day); (3-5) LPS + TQ with three doses of 2, 5 and 10 mg/kg (n=14 in each group). After 3 weeks, serum and cardiac levels of $IL-1{\beta}$, $TNF-{\alpha}$ and nitric oxide (NO) metabolites, and cardiac levels of malondialdehyde (MDA), total thiol groups, catalase (CAT) and superoxide dismutase (SOD) activities, permeability of heart tissue (evaluated by Evans blue dye method) and myocardial fibrosis were determined, histologically. Results: LPS administration induced myocardial and perivascular fibrosis and increased cardiac oxidative stress (MDA), inflammatory markers and heart permeability, while, reduced anti-oxidative enzymes (SOD and CAT) and the total thiol group. Administration of TQ significantly attenuated these observations. Conclusion: TQ improved myocardial and perivascular fibrosis through suppression of chronic inflammation and improving oxidative stress status and can be considered for attenuation of cardiac fibrosis in conditions with chronic low-grade inflammation.

An Experimental Study on the Effect of Irradiation and cia- dichlorodiBmmineplatinum(II) on the myocardium of Rats (방사선조사와 cis-dichlorodismmineplstinum(II)가 휜쥐의 심근에 미치는 효과에 관한 실험적 연구)

  • Lee Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.12 no.3
    • /
    • pp.285-293
    • /
    • 1994
  • Purpose : The study was designed to investigate the effect of cis-dichlorodiammineplatinum(II)(cis-DDP) on the radiation-induced cardiomyopathy in the rat. Materials and Methods : The myocardial damage was assessed by histopathologic changes. In radiation alone group, radiation dose ranged from 10-40 Gy X-ray in a single dose and in combined group, cis-dichlorodiammineplatinum(II) at a dose of 6 mg/kg was given intraperitoneally immediately after irradiation of same dose with X-ray alone group. Results : The early changes by radiation included congestion, inflammatory cell infiltrations and fibrosis in myocardial interstitium with focal myocardial necrosis, which was noted in 10 Gy group, Myocardial fibrosis was increased by increasing dose of radiation but myocardial necrosis was not Proportional to radiation dose. cis-DDP alone group showed minimal degeneration of myocardium with surrounded by inflammatory cell infiltrations. In combined group, myocardial fibrosis in 10 Gy group were similar to radiation alone group, but 30 Gy and 40 Gy groups showed severer changes. Electron microscopic examination showed disruption of Z-band and edema of mitochondria with decreased matrix density in 20 Gy radiation group which were severer in 40 Gy radiation group. Combined group showed endothelial changes and disruption of Z-band worse than radiation alone group as well as increased connective tissue, which was considered as a hallmark of late change in radiation-induced heart disease. Conclusion : This results showed minimal enhancement of the radiation-induced cardiomyopathy in rats by cis-DDP.

  • PDF

Effect of green tea extract microencapsulation on hypertriglyceridemia and cardiovascular tissues in high fructose-fed rats

  • Jung, Moon Hee;Seong, Pil Nam;Kim, Myung Hwan;Myong, Na-Hye;Chang, Moon-Jeong
    • Nutrition Research and Practice
    • /
    • v.7 no.5
    • /
    • pp.366-372
    • /
    • 2013
  • The application of polyphenols has attracted great interest in the field of functional foods and nutraceuticals due to their potential health benefits in humans. However, the effectiveness of polyphenols depends on their bioactivity and bioavailability. In the present study, the bioactive component from green tea extract (GTE) was administrated orally (50 mg/kg body weight/day) as free or in a microencapsulated form with maltodextrin in rats fed a high fructose diet. High fructose diet induced features of metabolic syndrome including hypertriglyceridemia, hyperuricemia, increased serum total cholesterol, and retroperitoneal obesity. In addition, myocardial fibrosis was increased. In rats receiving high fructose diet, the lowering of blood triglycerides, total cholesterol, non esterified fatty acid (NEFA) and uric acid, as well as the reduction in final body weight and retroperitoneal fat weight associated with the administration of GTE, led to a reversal of the features of metabolic syndrome (P < 0.05). In particular, the administration of microencapsulated GTE decreased myocardial fibrosis and increased liver catalase activity consistent with a further alleviation of serum NEFA, and hyperuricemia compared to administration of GTE. Taken together, our results suggest that microencapsulation of the bioactive components of GTE might have a protective effect on cardiovasucular system by attenuating the adverse features of myocardial fibrosis, decreasing uric acid levels and increasing hepatic catalase activity effectively by protecting their bioactivities.

Exercise induced Right Ventricular Fibrosis is Associated with Myocardial Damage and Inflammation

  • Rao, Zhijian;Wang, Shiqiang;Bunner, Wyatt Paul;Chang, Yun;Shi, Rengfei
    • Korean Circulation Journal
    • /
    • v.48 no.11
    • /
    • pp.1014-1024
    • /
    • 2018
  • Background and Objectives: Intense exercise (IE) induced myocardial fibrosis (MF) showed contradictory findings in human studies, making the relationship between IE and the development of MF unclear. This study aims to demonstrate exercise induced MF is associated with cardiac damage, and inflammation is essential to the development of exercise induced MF. Methods: Sprague-Dawley rats were submitted to daily 60-minutes treadmill exercise sessions at vigorous or moderate intensity, with 8-, 12-, and 16-week durations; time-matched sedentary rats served as controls. Enzyme-linked immunosorbent assay (ELISA) was used to measure serum cardiac troponin I (cTnI) concentration. After completion of the exercise protocol rats were euthanized. Biventricular morphology, ultrastructure, and collagen deposition were then examined. Protein expression of interleukin $(IL)-1{\beta}$ and monocyte chemotactic protein (MCP)-1 was evaluated in both ventricles. Results: After IE, right but not left ventricle (LV) MF occurred. Serum cTnI levels increased and right ventricular damage was observed at the ultrastructure level in rats that were subjected to long-term IE. Leukocyte infiltration into the right ventricle (RV) rather than LV was observed after long-term IE. Long-term IE also increased protein expression of proinflammation factors including $IL-1{\beta}$ and MCP-1 in the RV. Conclusions: Right ventricular damage induced by long-term IE is pathological and the following inflammatory response is essential to the development of exercise induced MF.

DA-8159, a Potent cGMP Phosphodiesterase Inhibitor, Attenuates Monocrotaline-Induced Pulmonary Hypertension in Rats

  • Kang, Kyung-Koo;Ahn, Gook-Jun;Sohn, Yong-Sung;Ahn, Byoung-Ok;Kim, Won-Bae
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.612-619
    • /
    • 2003
  • In this study, we evaluated the effects of oral administration of DA-8159, a selective phosphodiesterase-5 inhibitor, on the development of pulmonary hypertension (PH) induced by monocrotaline (MCT). Rats were administered either MCT (60 mg/kg) or saline. MCT-treated rats were divided into three groups and received orally administered vehicle, or 1 mg/kg or 5 mg/kg of DA-8159, twice a day for twenty-one days. The MCT group demonstrated increased right ventricular weights, medial wall thickening in the pulmonary arteries, myocardial fibrosis and the level of plasma cyclic guanosine monophosphate (cGMP), along with decreased body weight gains. However, DA-8159 markedly and dose-dependently reduced the development of right ventricular hypertrophy and medial wall thickening. DA-8159 also amplified the increase in plasma cGMP level and significantly increased the level of lung cGMP, compared with the MCT group. Although the body weight gain was still lower from the saline-treated control group, DA-8159 demonstrated a significant increase in body weight gains, in both 1 mg/kg and 5 mg/kg groups, when compared with the MCT group. In myocardial morphology, MCT-induced myocardial fibrosis was markedly prevented by DA-8159. These results suggest that DA-8159 may be a useful oral treatment option for PH.

The effect of melatonin on cardio fibrosis in juvenile rats with pressure overload and deregulation of HDACs

  • Wu, Yao;Si, Feifei;Luo, Li;Jing, Fengchuan;Jiang, Kunfeng;Zhou, Jiwei;Yi, Qijian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.607-616
    • /
    • 2018
  • The effect of melatonin on juveniles with cardio fibrosis is poorly understood. We investigated whether HDACs participate in the anti-fibrotic processes regulated by melatonin during hypertrophic remodeling. Abdominal aortic constriction (AAC) was employed in juvenile rats resulting in pressure overload-induced ventricular hypertrophy and melatonin was subsequently decreased via continuous light exposure for 5 weeks after surgery. AAC rats displayed an increased cross-sectional area of myocardial fibers and significantly elevated collagen deposition compared to sham-operated rats, as measured by HE and Masson Trichrome staining. Continuous light exposure following surgery exacerbated the increase in the cross-sectional area of myocardial fibers. The expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 genes were all significantly enhanced in AAC rats with light exposure relative to the other rats. Moreover, the protein level of $TNF-{\alpha}$ was also upregulated in the AAC light exposure groups when compared with the sham. However, Smad4 protein expression was unchanged in the juveniles' hearts. In contrast, beginning 5 weeks after the operation, the AAC rats were treated with melatonin (10 mg/kg, intraperitoneal injection every evening) or vehicle 4 weeks, and sham rats were given vehicle. The changes in the histological measures of cardio fibrosis and the gene expressions of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 were attenuated by melatonin administration. The results reveal that melatonin plays a role in the development of cardio fibrosis and the expression of HDAC1, HDAC2, HDAC3, HDAC4 and HDAC6 in cardiomyocytes.

Effects of Ivabradine on Left Ventricular Systolic Function and Cardiac Fibrosis in Rat Myocardial Ischemia-Reperfusion Model

  • Kim, Han Byul;Hong, Young Joon;Park, Hyuk Jin;Ahn, Youngkeun;Jeong, Myung Ho
    • Chonnam Medical Journal
    • /
    • v.54 no.3
    • /
    • pp.167-172
    • /
    • 2018
  • We evaluated the effects of Ivabradine on left ventricle (LV) ejection fraction (EF) and LV infarcted tissue in the rat myocardial ischemia-reperfusion model. Twenty rats were randomly assigned to group 1 (ischemia-reperfusion, no treatment, n=10) and group 2 (ischemia-reperfusion + Ivabradine 10 mg/kg, n=10). Ivabradine was administered for 28 days. Echocardiography was performed at 7 days and at 28 days after the induction of ischemia-reperfusion injury. Cardiac fibrosis induced by ischemia-reperfusion injury was evaluated by Masson's trichrome staining. The infarct size was quantified using the Image J program. At the 28-day follow-up, LVEF was significantly higher ($36.02{\pm}6.16%$ vs. $45.72{\pm}2.62%$, p<0.001) and fractional shortening was significantly higher ($15.23{\pm}2.84%$ vs. $20.13{\pm}1.38%$, p<0.001) in group 2 than group 1. Delta (28 day minus 7 day) EF was significantly higher in group 2 than group 1 ($-4.36{\pm}3.49%$ vs. $4.31{\pm}5.63%$, p<0.001). Also, heart rate (beats/min) was significantly lower in group 2 than group 1 ($251.67{\pm}25.19$ vs. $199.29{\pm}31.33$, p=0.025). Group 2 had a smaller infarct size ($40.70{\pm}8.94%$ vs. $30.19{\pm}5.89%$, p<0.01) than group 1 at 28-day follow-up. Oral administration of Ivabradine could improve LV systolic function and reduce infarcted tissue area in rat myocardial ischemia-reperfusion model.

Insulin-like growth factor-1 improves diabetic cardiomyopathy through antioxidative and anti-inflammatory processes along with modulation of Akt/GSK-3β signaling in rats

  • Wang, Cheng Yu;Li, Xiang Dan;Hao, Zhi Hong;Xu, Dongyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.613-619
    • /
    • 2016
  • Diabetic cardiomyopathy (DCM), a serious complication of diabetes mellitus, is associated with changes in myocardial structure and function. This study sought to explore the ability of insulin-like growth factor-1 (IGF-1) to modulate DCM and its related mechanisms. Twenty-four male Wistar rats were injected with streptozotocin (STZ, 60 mg/kg) to mimic diabetes mellitus. Myocardial fibrosis and apoptosis were evaluated by histopathologic analyses, and relevant proteins were analyzed by Western blotting. Inflammatory factors were assessed by ELISA. Markers of oxidative stress were tested by colorimetric analysis. Rats with DCM displayed decreased body weight, metabolic abnormalities, elevated apoptosis (as assessed by the bcl-2/bax ratio and TUNEL assays), increased fibrosis, increased markers of oxidative stress (MDA and SOD) and inflammatory factors (TNF-${\alpha}$ and IL-$1{\beta}$), and decreased phosphorylation of Akt and glycogen synthase kinase (GSK-$3{\beta}$). IGF-1 treatment, however, attenuated the metabolic abnormalities and myocardial apoptosis, interstitial fibrosis, oxidative stress and inflammation seen in diabetic rats, while also increasing the phosphorylation levels of Akt and GSK-$3{\beta}$. These findings suggest that IGF-1 ameliorates the pathophysiological progress of DCM along with an activation of the Akt/GSK-$3{\beta}$ signaling pathway. Our findings suggest that IGF-1 could be a potential therapeutic choice for controlling DCM.

Effects of Low intensity Cardiac Rehabilitation Exercise on Weight and Histological Changes of Rat Models with Acute Myocardial Infarction

  • Ji, Sung Ha;Kim, Ki Jong
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.1
    • /
    • pp.949-955
    • /
    • 2016
  • The purpose of the study was to investigate effects of Low intensity cardiac rehabilitation, using a treadmill, on the myocardial structure. We identified the effects by analyzing changes in the rats' weights and the results of biopsies. Twenty Sprague-Dawley male rats, 50 weeks old, were randomly divided into the exercise group and the control group. myocardial infarction(MI) was induced by ligaturing their left anterior descending artery. After the acute MI induction, two rats of each group began to fall dead, therefore, eight of each group completed at the end of the experiment. We used treadmills for animals for the exercise group. This exercise group performed 30 minutes of exercise five times per week for six weeks, while the control group did not perform any exercise. No statistically significant differences in weight were found in within group comparison and between group comparison. Furthermore, we observed histological changes in the myocardium using Hematoxylin & Eosin and Masson's trichrome staining in both groups. Low-intensity exercise inhibited myocardial fibrosis, may serve as a reference in the cardiopulmonary field, which plays a role in rehabilitating patients with cardiac disorders, including acute MI.