• Title, Summary, Keyword: microbial community

Search Result 629, Processing Time 0.149 seconds

Characterization of Microbial Community in Biological Wastewater Treatment System Using Respiratory Quinone Profiles

  • Lim Byung-Ran;Ahn Kyu-Hong;Lee Yonghun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • /
    • pp.111-114
    • /
    • 2003
  • The dynamics of microbial community structure of the various domestic wastewater treatment processes were examined using a novel approach of quinone profiles. The compositions of microbial quinone of 5 sites fer plant and lab-scale activated sludge were analyzed. More than 14 kinds of quinones were observed in the activated sludges tested in this study. The microbial community structure of the plant activated sludge processes a little differed from that of the lab-scale submerged MBR systems. The dominant quinones were UQ-8, UQ-10 followed $MK-8(H_4)$, MK-7 and MK-6. The molar ratio of ubiquinones to menaquinones (UQ/MK) changed from 0.81 to 1.9, indicating that aerobic bacteria dominated the microbial community of the activated sludge examined. The microbial diversity of the activated sludges calculated from the all quinone compositions was 9.5-11.9 and the microbial equability of the activated sludges was 0.64-0.79.

  • PDF

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh;Shagol, Charlotte C.;Yim, Woo-Jong;Tipayno, Sherlyn C.;Kim, Chang-Gi;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

Comparison between DNA- and cDNA-based gut microbial community analyses using 16S rRNA gene sequences (16S rRNA 유전자 서열 분석을 이용한 DNA 및 cDNA 기반 장내 미생물 군집 분석의 비교)

  • Jo, Hyejun;Hong, Jiwan;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.220-225
    • /
    • 2019
  • Studies based on microbial community analyses have increased in the recent decade since the development of next generation sequencing technology. Associations of gut microbiota with host's health are one of the major outcomes of microbial ecology filed. The major approach for microbial community analysis includes the sequencing of variable regions of 16S rRNA genes, which does not provide the information of bacterial activities. Here, we conducted RNA-based microbial community analysis and compared results obtained from DNA- and its cDNA-based microbial community analyses. Our results indicated that these two approaches differed in the ratio of Firmicutes and Bacteroidetes, known as an obesity indicator, as well as abundance of some key bacteria in gut metabolisms such as butyrate producers and probiotics strains. Therefore, cDNA-based microbial community may provide different insights regarding roles of gut microbiota compared to the previous studies where DNA-based microbial community analyses were performed.

T-RFLP Analysis of Microbial Community Structure in Leachate from Landfill Sites (폐기물매립장 침출수내 미생물군집 구조 해석을 위한 T-RFLP의 활용)

  • Yu, Jae-Cheul;Ishigaki, Tomonori;Kamagata, Yoichi;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.369-378
    • /
    • 2010
  • Microorganisms are key-role player for stabilization of landfill sites. In order to evaluate the availability of T-RFLP(Terminal Restriction Fragment Length Polymorphism) for monitoring microbial community variations during stabilization of landfill sites, the phylogenic diversity of microbial community in the leachate from 4 different full-scale landfills was characterized by T-RFLP based on bacterial 16S rDNA. Main population of microbial community analyzed by T-RFLP was significantly similar with that of microbial community analyzed by clone library analysis. The results of T-RFLP analysis for main population of microbial community in the leachate from landfills with different landfill structures, waste types and landfill ages showed apparently different microbial diversity and structures. Therefore, long-term monitoring of microbial community in leachate from landfill sites by using T-RFLP is expected to be available for evaluation of landfill stability.

Evaluation of Fluoride Removal Effect with Growth of Attached Microbial Community in Middle and Small Stream (중·소하천에서 부착미생물군집의 성장에 따른 불소 제거 효과 평가)

  • Kim, Tae-Kyung;Ryu, Seo-Young;Park, Yoon-A;Lee, Jong-Jun;Joo, Kwang-Jin;Chang, Kwang-Hyeon;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.595-603
    • /
    • 2018
  • This study was conducted to understand the growth of attached microbial community in small and medium streams of Gyeonggi-do and the removal efficiency of fluoride with changes in growth. The sites monitoring were carried out for 12 weeks at the P1 and P2(P1 is the point where the discharge water flows. P2 is the downstream point of about 2 km flow), and investigated the water quality and the biomass analysis of the attached microbial community. The growth of the attached microbial community increased up to the 7th investigation, and it was observed that detachment phenomenon occurred. Influencing factors about growth of the attached microbial community were flow rate, velocity, and organic material(T-N & T-P). Meanwhile, fluoride content of attached microbial community also tended to increase until the 7th investigation, and decrease from the 8th. It is assumed that fluoride content has also be reduced with the detachment phenomenon of the attached microbial community. It is expected that this will contribute to the evaluation and management of the use of attached microbial community as a means of stream management. The application of techniques using the attached microbial community should include basic investigation of factors that may affect the growth of the attached microbial community and replacement of the attachment plate according to the time of removal.

Microbial Community Profiling in cis- and trans-Dichloroethene Enrichment Systems Using Denaturing Gradient Gel Electrophoresis

  • Olaniran, Ademola O.;Stafford, William H.L.;Cowan, Don A.;Pillay, Dorsamy;Pillay, Balakrishna
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.560-570
    • /
    • 2007
  • The effective and accurate assessment of the total microbial community diversity is one of the primary challenges in modem microbial ecology, especially for the detection and characterization of unculturable populations and populations with a low abundance. Accordingly, this study was undertaken to investigate the diversity of the microbial community during the biodegradation of cis- and trans-dichloroethenes in soil and wastewater enrichment cultures. Community profiling using PCR targeting the l6S rRNA gene and denaturing gradient gel electrophoresis (PCR-DGGE) revealed an alteration in the bacterial community profiles with time. Exposure to cis- and trans-dichloroethenes led to the disappearance of certain genospecies that were initially observed in the untreated samples. A cluster analysis of the bacterial DGGE community profiles at various sampling times during the degradation process indicated that the community profile became stable after day 10 of the enrichment. DNA sequencing and phylogenetic analysis of selected DGGE bands revealed that the genera Acinetobacter, Pseudomonas, Bacillus, Comamonas, and Arthrobacter, plus several other important uncultured bacterial phylotypes, dominated the enrichment cultures. Thus, the identified dominant phylotypes may play an important role in the degradation of cis- and trans-dichloroethenes.

Temporal and Spatial Change in Microbial Diversity in New-developed Wetland Soil Covered by Tamarix chinesis Community in Chinese Yellow River Delta

  • Chen Weifeng;Ann Seoung-Won;Kim Hong-Nam;Shi Yanxi;Mi Qinghua
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.367-371
    • /
    • 2005
  • Soil samples were collected from new-developed wetland soil ecosystem of Tamarix chinesis plantation in Chinese Yellow River Delta in different months of 2003. Soil characteristics, temporal change and spatial distribution of microbial community composition and their relationship with nitrogen turnover and circling were investigated in order to analyze and characterize the role of microbial diversity and functioning in the specific soil ecosystem. The result showed that the total population of microbial community in the studied soil was considerably low, compared with common natural ecosystem. The amount of microorganism followed as the order: bacteria> actinomycetes>fungi. Amount of actinomycetes were higher by far than that of fungi. Microbial population remarkably varied in different months. Microbial population of three species in top horizon was corrected to that in deep horizon. Obvious rhizosphere effect was observed and microbial population was significantly higher in rhizosphere than other soils due to vegetation growth, root exudation, and cumulative dead fine roots. Our results demonstrate that microbial diversity is low, while is dominated by specific community in the wetland ecosystem of Tamarix chinesi.

Comparison of Electricity Generation and Microbial Community Structure in MFCs Fed with Different Substrates (미생물연료전지에서 공급기질에 따른 전기발생량 및 미생물 군집구조 비교)

  • Yu, Jaecheul;Cho, Haein;Cho, Sunja;Lee, Taeho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.608-613
    • /
    • 2010
  • Electricity generation of microbial fuel cells (MFC) is greatly affected by the kind of feed substrates because substrates would change microbial community of electrochemically active bacteria (EAB) able to transfer electrons to electrode. The effect of different substrates on electricity generation and microbial community of MFC was investigated. Two-chamber MFCs fed with acetate (A-MFC), butyrate (B-MFC), propionate (P-MFC), glucose (G-MFC) and a mixture (M-MFC) of the 4 substrates (acetate : butyrate : propionate : glucose = 1 : 1 : 1 : 1 as $COD_{Cr}$ base) were operated under continuous mode. The maximum power density was found from the M-MFC ($190W/m^3$) which showed the lowest internal resistance ($89{\Omega}$). The maximum power densities of the pure substrates feed MFCs were in order of A-MFC ($25W/m^3$), P-MFC ($21W/m^3$), B-MFC ($20W/m^3$) and G-MFC ($9W/m^3$). In DGGE analysis, the microbial community structure in suspension was quite different from each others depending on feed substrates, while the community structure in the biofilm was relatively similar regardless of the substrates. This result suggests that the feed substrates would affect the microbial community of suspended growth bacteria than attached growth bacteria resulting in difference of electricity generation in MFCs.

Comparison of Microbial Community of Rhizosphere and Endosphere in Kiwifruit

  • Kim, Min-Jung;Do, Heeil;Cho, Gyeongjun;Jeong, Rae-Dong;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.705-711
    • /
    • 2019
  • Understanding the microbial community and function are crucial knowledge for crop management. In this study, bacterial and fungal community structures both rhizosphere and endosphere in kiwifruit were analyzed to gain our knowledge in kiwifruit microbiome. Microbial community in rhizosphere was less variation than endosphere community. Functional prediction results demonstrated that abundance of saprotrophic fungi was similar in both rhizosphere and endosphere, but potential pathogenic fungi was more abundance in endosphere than in rhizosphere. This finding suggested that maintain healthy soil is the first priority to protect the host plant against biotic stresses.

Analysis of Microbial Community Structure in River Ecosystem Using Quinone Profiles (Quinone profile를 이용한 하천생태계의 미생물군집구조 해석)

  • Lim, Byung-Ran;Lee, Kisay;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.685-690
    • /
    • 2006
  • The differences in microbial community structures between planktonic microorganism and biofilm in rivers were investigated using respiratory quinone profiles. The compositions of microbial quinone for 4 tributaries of the Kyongan Stream located in/flowing through Yongin City, Gyeonggi-Do were analyzed. Ubiquinone(UQ)-8, UQ-9, menaquinone(MK)-6 and Plastoquinone(PQ)-9 were observed in all samples of planktonic microorganism and biofilm for the sites investigated, Most planktonic microorganism and biofilm had UQ-8(15 to 30%) and PQ-9(over 30%) as the dominant quinone type. These results indicated that oxygenic phototrophic microbes(cyanobacteria and/or eukaryotic phytoplankton) and UQ-8 containing proteobacteria constituted major microbial populations in the river. The quinone concentration in the river waters tested, which reflects the concentration of planktonic microorganisms, increases with increasing DOC. Further research into this is required. The microbial diversities of planktonic microorganism and biofilm calculated based on the composition of all quinones were in the range from 4.2 to 7.5, which was lower than those for activated sludge(ranging from 11 to 14.8) and soils(ranging from 13.4 to 16.8). The use of quinone profile appears to be a useful tool for the analysis of microbial community structure in river.