• Title, Summary, Keyword: mathematically gifted elementary student

Search Result 25, Processing Time 0.051 seconds

Mathematical Reasoning Ability and Error Comparison through the Descriptive Evaluation of Mathematically Gifted Elementary Students and Non-Gifted Students (초등수학영재와 일반학생의 서술형 평가를 통한 수학적 추론 능력 및 오류 비교)

  • Kim, Dong Gwan;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.123-148
    • /
    • 2014
  • The purpose of this study is to figure out the perceptional characteristics of mathematically gifted elementary students by comparing the mathematical reasoning ability and errors between mathematically gifted elementary students and non-gifted students. This research has been targeted at 63 gifted students from 5 elementary schools and 63 non-gifted students from 4 elementary schools. The result of this research is as follows. First, mathematically gifted elementary students have higher inductive reasoning ability compared to non-gifted students. Mathematically gifted elementary students collected proper, accurate, systematic data. Second, mathematically gifted elementary students have higher inductive analogical ability compared to non-gifted students. Mathematically gifted elementary students figure out structural similarity and background better than non-gifted students. Third, mathematically gifted elementary students have higher deductive reasoning ability compared to non-gifted students. Zero error ratio was significantly low for both mathematically gifted elementary students and non-gifted students in deductive reasoning, however, mathematically gifted elementary students presented more general and appropriate data compared to non-gifted students and less reasoning step was achieved. Also, thinking process was well delivered compared to non-gifted students. Fourth, mathematically gifted elementary students committed fewer errors in comparison with non-gifted students. Both mathematically gifted elementary students and non-gifted students made the most mistakes in solving process, however, the number of the errors was less in mathematically gifted elementary students.

  • PDF

A Case Study on the Metacognition of Mathematically Gifted Elementary Students in Problem-Solving Process (초등 수학영재들이 수학문제 해결과정에서 보이는 메타인지 사례 연구)

  • Han, Sang-Wook;Song, Sang-Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.15 no.2
    • /
    • pp.437-461
    • /
    • 2011
  • The purpose of this study was to examine the metacognition of mathematically gifted students in the problem-solving process of the given task in a bid to give some significant suggestions on the improvement of their problem-solving skills. The given task was to count the number of regular squares at the n${\times}$n geoboard. The subjects in this study were three mathematically gifted elementary students who were respectively selected from three leading gifted education institutions in our country: a community gifted class, a gifted education institution attached to the Office of Education and a university-affiliated science gifted education institution. The students who were selected from the first, second and third institutions were hereinafter called student C, student B and student A respectively. While they received three-hour instruction, a participant observation was made by this researcher, and the instruction was videotaped. The participant observation record, videotape and their worksheets were analyzed, and they were interviewed after the instruction to make a qualitative case study. The findings of the study were as follows: First, the students made use of different generalization strategies when they solved the given problem. Second, there were specific metacognitive elements in each stage of their problem-solving process. Third, there was a mutually influential interaction among every area of metacognition in the problem-solving process. Fourth, which metacognitive components impacted on their success or failure of problem solving was ascertained.

  • PDF

A Study on the Relations between Co-cognitive Factors and Leadership of Elementary Mathematically Gifted Students and General Students (초등수학영재 및 일반학생의 인지적 조합요인과 리더십의 관계 연구)

  • Lee, Jeong Im;Ryu, Sung Rim
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.3
    • /
    • pp.337-358
    • /
    • 2012
  • The purpose of this study is to find out the relation between co-cognitive factors, personal affective and characteristic features as the basis that prompts talented behaviors and leadership. The subjects of the study were 77 elementary mathematically gifted students attending at the gifted education center affiliated with University of Education in D metropolitan city and 110 elementary students in metropolitan city and provinces. The results of this study are as follows. First, elementary mathematically gifted students had higher levels than general students in every subdirectory of co-cognitive factors and the difference was statistically significant. Second, there was a difference between leadership of elementary mathematically gifted students and that of general students. Also, the level of gifted students' leadership was higher than the latter. Third, when it comes to the relation between co-cognitive factors and leadership, both of gifted students and general students showed positive correlation between subdirectory of co-cognitive factors and that of leadership. Consequently, development of co-cognitive factors will lead to improvement of leadership since co-cognitive factors positively influence on leadership. Therefore, it is desirable that co-cognitive factors are considered when developing a program for leadership.

  • PDF

The Effect of Team Project Activity for Game Making on the Community Care and Organizational Managerial Capacity of Elementary Mathematically Gifted Students (게임개발을 위한 팀 프로젝트 활동이 초등수학영재의 공동체배려와 조직관리능력 기술에 미치는 효과)

  • Hwang, Yong Won;Son, Hong Chan
    • Education of Primary School Mathematics
    • /
    • v.18 no.3
    • /
    • pp.175-190
    • /
    • 2015
  • This study investigated the effect of team project activity for game making on the elementary mathematically gifted students' community care and organizational management capacity. 7 mathematically gifted students of 4th grade are selected and participated. After 15 hours activities during 2 months of team project on game making, their community care and organizational management capacity were improved. This results suggested that leadership education is possible in mathematics curriculum for mathematics gifted students.

Development and Application of the Mathematically Gifted Student Learning Program Utilizing App Inventor for Self-directed Learning Ability (자기주도적 학습능력의 향상을 위한 앱인벤터 활용 수학영재프로그램의 개발과 적용)

  • Lee, Jae-Jun;Yoo, In-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • Strengthening self-directed learning ability is established as one of the goals of gifted education in Korea. In addition, it should be noted that self-directed learning can be realized in variety of ways as favorable conditions and environments are fostered to provide gifted education utilizing program. in the recent days. But, gifted learning programs for programming are programmed for information gifted student. Therefore, we have analyzed in this study the effects of improvement on self-directed learning ability of mathematically gifted student through class utilizing app inventor program for self-directed learning ability. Built up from the 4th and 5th grade to elementary math one class for gifted children complete by making math quiz, we use the app inventor to activity. The result of experiment showed very significant difference in the post-survey to less than .002 in the pre-survey in terms of three domains, which are intrinsic motivation, the openness of learning opportunities and autonomy which corresponds to sub-elements of self-directed learning ability. We could verify from the result of the study that mathematically gifted student learning program utilizing app development activity have positive effects on self-directed learning ability of mathematically gifted students.

A Comparison between Methods of Generalization according to the Types of Pattern of Mathematically Gifted Students and Non-gifted Students in Elementary School (초등수학영재와 일반학생의 패턴의 유형에 따른 일반화 방법 비교)

  • Yu, Mi Gyeong;Ryu, Sung Rim
    • School Mathematics
    • /
    • v.15 no.2
    • /
    • pp.459-479
    • /
    • 2013
  • The Purpose of this study was to explore the methods of generalization and errors pattern generated by mathematically gifted students and non-gifted students in elementary school. In this research, 6 problems corresponding to the x+a, ax, ax+c, $ax^2$, $ax^2+c$, $a^x$ patterns were given to 156 students. Conclusions obtained through this study are as follows. First, both group were the best in symbolically generalizing ax pattern, whereas the number of students who generalized $a^x$ pattern symbolically was the least. Second, mathematically gifted students in elementary school were able to algebraically generalize more than 79% of in x+a, ax, ax+c, $ax^2$, $ax^2+c$, $a^x$ patterns. However, non-gifted students succeeded in algebraically generalizing more than 79% only in x+a, ax patterns. Third, students in both groups failed in finding commonness in phased numbers, so they solved problems arithmetically depending on to what extent it was increased when they failed in reaching generalization of formula. Fourth, as for the type of error that students make mistake, technical error was the highest with 10.9% among mathematically gifted students in elementary school, also technical error was the highest as 17.1% among non-gifted students. Fifth, as for the frequency of error against the types of all patterns, mathematically gifted students in elementary school marked 17.3% and non-gifted students were 31.2%, which means that a majority of mathematically gifted students in elementary school are able to do symbolic generalization to a certain degree, but many non-gifted students did not comprehend questions on patterns and failed in symbolic generalization.

  • PDF

Case Analysis on the Signification Model of Three Signs in a Mathematically Gifted Student's Abstraction Process (수학 영재의 추상화 학습에서 기호의 의미 작용 과정 사례 분석)

  • Song, Sang-Hun;Shin, Eun-Ju
    • School Mathematics
    • /
    • v.9 no.1
    • /
    • pp.161-180
    • /
    • 2007
  • The purpose of this study is to analyse how a mathematically gifted student constructs a nested signification model of three signs, while he abstracts the solution of a given NIM game. The findings of a qualitative case study have led to conclusions as follows. In general, we know that most of mathematically gifted students(within top 0.01%) in the elementary school might be excellent in constructing representamen and interpretant But it depends on the cases. While a student, one of best, is making the meaning of object in general level of abstraction, he also has a difficulty in rising from general level to formal level. When he made the interpretant in general level with researcher's advice, he was able to rise formal level and constructed a nested signification model of three signs. We suggested 3 considerations to teach the mathematically gifted students in elementary school level.

  • PDF

Identification and Selection the Mathematically Gifted Child on the Elementary School Level (초등 수학 영재의 판별과 선발)

  • 송상헌
    • Journal of Gifted/Talented Education
    • /
    • v.11 no.2
    • /
    • pp.87-106
    • /
    • 2001
  • Identification and selection the mathematically gifted child must be based on it's definition. So, we have to consider not only IQ or high ability in mathematical problem solving, but also mathematical creativity and mathematical task commitment. Furthermore, we must relate our ideas with the programs to develop each student's hidden potential. This study is focused on the discrimination of the candidates who would like to enter the elementary school level mathematics gifted education program. To fulfill this purpose, I considered the criteria, principles, methods, and tools. Identification is not exactly separate from selection and education. So, it is important to have long-term vision and plan to identify the mathematically gifted students.

  • PDF

A Comparison on the Relations between Affective Characteristics and Mathematical Reasoning Ability of Elementary Mathematically Gifted Students and Non-gifted Students (초등 수학영재와 일반학생의 정의적 특성과 수학적 추론 능력과의 관계 비교)

  • Bae, Ji Hyun;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.19 no.2
    • /
    • pp.161-175
    • /
    • 2016
  • The purpose of this study is to measure the differences in affective characteristics and mathematical reasoning ability between gifted students and non-gifted students. This study compares and analyzes on the relations between the affective characteristics and mathematical reasoning ability. The study subjects are comprised of 97 gifted fifth grade students and 144 non-gifted fifth grade students. The criterion is based on the questionnaire of the affective characteristics and mathematical reasoning ability. To analyze the data, t-test and multiple regression analysis were adopted. The conclusions of the study are synthetically summarized as follows. First, the mathematically gifted students show a positive response to subelement of the affective characteristics, self-conception, attitude, interest, study habits. As a result of analysis of correlation between the affective characteristic and mathematical reasoning ability, the study found a positive correlation between self-conception, attitude, interest, study habits but a negative correlation with mathematical anxieties. Therefore the more an affective characteristics are positive, the higher the mathematical reasoning ability are built. These results show the mathematically gifted students should be educated to be positive and self-confident. Second, the mathematically gifted students was influenced with mathematical anxieties to mathematical reasoning ability. Therefore we seek for solution to reduce mathematical anxieties to improve to the mathematical reasoning ability. Third, the non-gifted students that are influenced of interest of the affective characteristics will improve mathematical reasoning ability, if we make the methods to be interested math curriculum.

A study on teaching methods for the mathematically gifted in elementary school (초등학교 수학 영재 지도 방안에 관한 고찰)

  • Nam Seung-In
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.2 no.1
    • /
    • pp.41-59
    • /
    • 1998
  • Today's gifted students will be tomorrow's leaders in goverment, economies, technology, sciences, and all other areas of human endeavor. these students have a right to partcipate in school programs that will help them reach their special potentions. The school have on obligation to provide flexible and effective programs for gifted. In this study is to know in broad generalities for identifying methods mathematics gifted, the instructional environment, teaching methods in the regular classroom, enrichment program contents, evaluating student and program contents.

  • PDF