• Title, Summary, Keyword: malachite

Search Result 126, Processing Time 0.046 seconds

Fundamental Studies for the Adsorption Features of Malachite Green on Granular Activated Carbon (활성탄에 의한 말라카이트 그린 흡착 특성에 관한 기초연구)

  • Baek, Mi-Hwa;Choi, Young-Jin;Kim, Young-Ji;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.3
    • /
    • pp.459-463
    • /
    • 2009
  • The adsorption features of malachite green onto activated carbon have been investigated for its treatment from aqueous solution. The influential factors were examined the initial concentration of malachite green, reaction temperature, and pH. Under experimental conditions, adsorption equilibrium of malachite green was attained within 2 hr after the adsorption started. The adsorption reaction of malachite green followed the pseudo-second order rate model, and the adsorption rate constants(k2) decreased with increasing initial concentrations of malachite green. Adsorption behavior of malachite green on activated carbon was found to follow the Freundlich model well in the initial adsorbate concentration range. With increase in temperature, the adsorbed amount of malachite green at equilibrium increased, which indicate that the adsorption reaction was endothermic reaction. Thermodynamic parameters for malachite green adsorption reaction were estimated at varying temperatures, and in the pH range of 2-10, adsorption of malachite green increased.

Analysis of malachite green and leuco-malachite green in sea food (수산식품 중 말라카이트그린 및 류코말라카이트그린의 분석)

  • Choi, Dongmi;Hong, Soongun;Im, Moohyeog;Jeong, Jiyoon;Chang, Moonik;Park, Kunsang;Hong, Mooki;Woo, Gunjo
    • Analytical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.142-148
    • /
    • 2006
  • To determine malachite green and leuco-malachite green residues in sea food, a liquid chromatographic method has been optimized. The target compounds were extracted in the homogenized edible tissues with a mixture of McIlvaine buffer-acetonitrile and partitioned against dichloromethane. After concentrating the lower layer, the resulting residues were re-dissolved in methanol and analyzed by the HPLC with visible detector at 620 nm using acetonitrile-acetate buffer. For the analysis of leuco-malachite green with malachite green simultaneously, post-column packed with lead(IV) oxide was used for oxidizing leuco-malachite green to malachite green. The correlation coefficients($r^2$) was 0.9989 for malachite green, and 0.9995 for leuco-malachite green. The limit of detection was 0.005 mg/kg for the combined of malachite green and leuco-malachite green at signal/noise${\geq}3$. The recovery rate was within a reliable range of 84~98% (CV 3~16%). Leuco-malachite green were detected in carp and crusian carp.

Adsorption Characteristics of Malachite Green Employing Waste Garnet as Adsorbent (폐석류석을 흡착제로 이용한 말라카이트그린 흡착 특성)

  • Baek, Mi-Hwa;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.2
    • /
    • pp.216-221
    • /
    • 2007
  • The adsorption characteristics of malachite green on waste garnet have been investigated for its treatment from aqueous solution by employing waste garnet which is generated from the abrasive production process as an adsorbent. The influential factors examined were the initial concentration of malachite green in solution, reaction temperature, and the amount of adsorbent. Also, the effect of the modification of the surface of adsorbent on adsorption was examined. As the initial malachite green was increased with reaction temperature and the color removal of malachite green-containing solution was promoted with the amount of adsorbent. Finaly, increased adsorption of malachite green could be attained when the surface of glass was modified by hexamethyldisilazane.

Thiadiazole-thione surfactants: Preparation, flotation performance and adsorption mechanism to malachite

  • Huang, Yaoguo;Liu, Guangyi;Liu, Jun;Yang, Xianglin;Zhang, Zhiyong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.99-108
    • /
    • 2018
  • In this paper, novel thiadiazole-thione surfactants including 5-heptyl-1,3,4-thiadiazole-2-thione (HpSDT), 5-phenyl-1,3,4-thiadiazole-2-thione (PSDT) and 5-(2-hydroxyphenyl)-1,3,4-thiadiazole-2-thione (HPhSDT) were synthesized and originally introduced as collectors in froth flotation. Microflotation tests showed that HpSDT exhibited better flotation response to malachite than PSDT and HPhSDT, as well as excellent flotation selectivity against quartz. The contact angle results inferred that the hydrophobization intensity of these collectors toward malachite was in the order as HpSDT> PSDT> HPhSDT. ${\zeta}$-potential recommended a chemisorption of HpSDT on malachite surfaces. FTIR deduced that cupric or cuprous atoms might bond with the S and N atoms of HpSDT to form a conjugated ring. XPS further gave an additional evidence that HpSDT-Cu(I) complexes were produced on malachite surfaces via combining surface Cu atoms with HpSDT's N and S atoms, with reducing surface Cu(II) to Cu (I). The tighter orientation arrangement on malachite and stronger hydrophobicity rendered HpSDT to possess better flotation affinity toward malachite than PSDT and HPhSDT.

Flotation Characteristics of Malachite by Various Collectors (포수제(捕收劑) 종류(種類)에 따른 공작석(孔雀石)의 부유선별(浮遊選別) 특성(特性))

  • Kim, Hyung-Seok;Kim, Wan-Tae;Han, In-Kyu;Kim, Sang-Bae
    • Journal of the Korean Institute of Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.58-64
    • /
    • 2010
  • In order to select the proper collector for the flotation of malachite, we had floated malachite by using various collectors. When measuring the zeta potential of malachite, we knew that the point of zero charge of malachite is found at pH 8.2 and malachite particles are negatively charged above this pH value; and positively, below this pH value. The floatability of malachite by the anionic collectors like sodium oleate and Aeropromoter 845, was about 97% in pH 5~11 range, whereas that of malachite by alkyl hydroxamate and the cationic collector like dodecyl trimethyl ammonium chloride and dodecyl ethyl methyl ammonium chloride, was below 15% above pH 5 regardless of dosage increase of collector and flotation time. The malachite sulphidised by $(NH_4)_2S$ was floated above 97% by potassium amyl xanthate. The dosage of potassium amyl xanthate decreased and the flotation period shortened to one third than when it was not sulphidised by $(NH_4)_2S$. Therefore, potassium amyl xanthate and the anionic collectors like sodium oleate and Aeropromoter 845 can be used as the collector of malachite.

Adsorption Characteristics of Malachite Green on Zeolite (제올라이트에 의한 말라카이트 그린의 흡착특성)

  • Lee, Jong-Jib;Um, Myeong-Heon
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.312-319
    • /
    • 2012
  • Malachite green is used a dye but malachite green is harmful toxic substance. In this study, the adsorption characteristics of zeolite has been investigated for the adsorption of malachite green dissolved in water. The effects of initial dye concentration, contact time, pH and temperature on adsorption of malachite green by a fixed amount of zeolite have been studied in batch adsorber and fixed bed. The adsorption equilibrium data are successfully fitted to the Freundlich isotherm equation in the temperature range from 25 to $45^{\circ}C$. The estimated values of k and ${\beta}$ are 23.60-46.88, 0.225-0.347, respectively. The mechanism of the adsorption process was determined from the intraparticle diffusion model. The effects of the operation conditions of the fixed bed on the breakthrough curve were investigated. When the inlet concentration and initial flow rate of malachite green are increased, the corresponding adsorption breaktime appears to decrease. Breaktime increased with increasing bed height and length of adsorption zone showed similar patterns.

The Problem of Using Malachite Green and What We Van do about it (말라카이트 그린)

  • Myeong, Cheol-Su;Gang, Yeong-Seung
    • Journal of the Korean Professional Engineers Association
    • /
    • v.38 no.6
    • /
    • pp.10-12
    • /
    • 2005
  • Recently, the KFDA(Korea Food & Drug Administration) has announced that the Malachite Green was found from imported fishes and eels. Malachite Green is used for remedy of diseased fishes. The administration has a plan to intensify monitoring system for distribution of fishes. It is necessary to operate the improved warning system for public health.

  • PDF

Copper sulfide species formed on malachite surfaces in relation to flotation

  • Feng, Qicheng;Zhao, Wenjuan;Wen, Shuming;Cao, Qinbo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.48
    • /
    • pp.125-132
    • /
    • 2017
  • The interaction between sulfide ion species and malachite surfaces in relation to flotation was studied in this work using X-ray photoelectron spectroscopy analysis, surface adsorption, zeta potential determination, and micro-flotation experiments. Results demonstrate that the flotation recovery of malachite was correlated with the contents of sulfidization products and their active components as well as the residual sulfide ion species in pulp solutions. The sulfidization product was composed of cuprous monosulfide, cuprous disulfide, and cuprous polysulfide. Among them, disulfide and polysulfide positively contributed to the activity of the product.

Effect to the Copper System Pigments by the Nitrogen Dioxide(NO2) Gas (이산화질소(NO2)가 구리(Cu)계통 안료에 미치는 영향)

  • Kim, Ji Won;Lee, Hwa Soo;Lee, Han Hyeong;Kim, Myoung Nam;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.403-409
    • /
    • 2015
  • Malachite and Azurite are the typical copper system pigments which used the mural paintings since ancient times. The mural painting is at risk for damages of the painting layer by atmosphere gas because it is exposed at external environment. In this study, it did experiment about an effect to Malachite and Azurite by environmental pollution gas($NO_2$, $CO_2$, $SO_2$) then analysis and estimate about test for pieces using mural painting colored that two pigments. As a result, Malachite and Azurite were changed on $NO_2$ but not changed $CO_2$ and $SO_2$. Especially as the concentration of $NO_2$ is increased, exfoliation of the pigment layer weave remarkably formed pores on the pigment particles on SEM, the phenomenon to be pieces were observed together with smaller particles. In the case of Malachite that were exposed to $NO_2$ gas, new compounds(Rouaite : dicopper (nitrate(V) trihydroxide, $Cu_2(NO_3)(OH)_3$)) was appeared by XRD analysis. Therefore, there had been able to verify the fact that the cause exfoliation and discoloration phenomena accompanied by chemical changes for Malachite and Azurite.

Study for Energy Transfer from Rhodamine 6G to Malachite Green Using Time Correlated Single Photon Counting Method (시간상관 단일광자 계수법에의한 Rhodamine 6G에서 Malachite Green으로의 에너지 전달 연구)

  • Kim, Hyun-Soo;Eom, Hyo-Soon;Choi, Gyu-Kwan;Jeong, Hong-Sik;Kim, Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.203-208
    • /
    • 1991
  • We investigated the nonradiative energy transfer process from Rhodamine 6G to Malachite Green in ethylen glycol solvent using time correlated single photon counting system equipped with a modelocked Ar ' laser. The reduced concentration and critical transfer distance for various acceptor concentration were obtained by using a full-fitting analysis of the fluorescence decay curves. We found that Huber model is more suitable than Forster model and the influence of energy migration through the dipole-dipole interaction becomes more significant for the low acceptor concentrations relative to the donor concentration($5\times 10^4$mol/l).

  • PDF