• Title/Summary/Keyword: liver damage

Search Result 443, Processing Time 0.223 seconds

The Pro and Post Effects of Soshiho-tang on Rat's Liver Damage induced by $CCl_4$ (소자호탕이 $CCl_4$로 유발된 Rat의 간 장해 전후에 미치는 영향)

  • Dang Chung Woon;Han Kyung Hee;Han Sang Mook;Kim Myung Dong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.5
    • /
    • pp.1362-1373
    • /
    • 2004
  • In studying the specific effects of some drugs, animals under experiments get some stress through laboratory environments, drug injection, and adaptation period. These stimuli do harms on liver function. Nowadays studies on liver intoxication and its protection are under research, but the function of dissolution is rarely under studies. It is widely accepted that Soshiho-tang has function of clearing away low spirits, and that it enables liver bloods to move stronger, and to have calm mind. So I injured rats liver by injectioning CCI₄. And the rats took in Soshiho-tang solution. I made a comparison between the functions before and after rat's liver damage. There are many representative serums used to note an index on liver damage. I used total protein, albumin, ALP, GOT, GPT activity, P450, SOD, Catalase, GST, GR, and GPx. I got the following results. When Soshiho-tang was injected after CCI4 intoxication, total protein and albumin decreased. When Soshiho-tang was injected, ALP decreased, compared with control group. When Soshiho-tang was injected after CCI₄ intoxication, AST and ALT decreased. When Soshiho-tang was injected before CCI₄ intoxication, P450 was restrained. When Soshiho-tang was injected, LPO was all restrained. When Soshiho-tang was injected, SOD, Catalase, GST, GR, and, GPx increased. These results show that blood test reveals that it is good to inject Soshiho-tang after CCI₄ intoxication, but that it is good to inject Soshiho-tang before CCI₄ intoxication in case of P450, LPO, SOD, Catalase, GST, GR, and GPx. It is estimated that the medication period and time of liver damage by CCI₄ have counter results, and that it needs more modified study.

Effects of G009 on Chemical-Induced Liver Damage in Rats (G009의 간 보호작용에 관한 연구)

  • Lee, Joo-Young;Park, Ki-Sook;Chung, Jin-Ho;Cho, Mee-Jung;Ko, Kwang-Ho;Lee, Jun-Woo;Jeong, Hoon;Lee, Seung-Yong
    • Biomolecules & Therapeutics
    • /
    • v.2 no.2
    • /
    • pp.206-212
    • /
    • 1994
  • The present study was performed to determine the protective effect of G009 on liver damage induced bv ethanol $CCl_4$ and thioacetamide in rats. In acute fatty liver animal model induced by ethanol, triglyceride accumulation was markedly decreased to the normal control level by 25 mg/kg G009 treatment. In addition, G009 significantly reduced serum ALT and AST levels in $CCl_4$-induced acute hepatitis animals. Treatment of G009 to the acute hepatitis rats induced by thioacetamide resulted in a dose dependent reduction of serum ALT level as well as AST level up to the normal control level. These protective effects of G009 were confirmed by histological examinations of the liver. These results suggested that G009 could be effective for the protection from the liver damage induced by ethanol, $CCl_4$and thioacetamide.

  • PDF

Effect of Youngyanggak-san against Thioacetamide Induced Acute Liver Damage in Rat (영양각산이 Thioacetamide 유발 간손상에 미치는 영향)

  • Shin, Mi-Rae;Kim, Kyeong Jo;Kim, Soo Hyun;Lee, Ji-Hye;Kwon, O Jun;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.1
    • /
    • pp.47-55
    • /
    • 2018
  • Objectives : The current study is to evaluate the hepatoprotective effect of youngyanggak-san (YGS) on thioacetamide (TAA)-induced acute liver injury in rats. Methods : YGS is composed of Glycyrrhizae Radix, Asiasari Radix, Cimicifugae Rhizoma, Saigae Tataricae Cornu. While N-YGS (non-youngyanggak-san) doesn't include Saigae Tataricae Cornu. Two samples were administrated TAA together for 3 days. Thirty-six rats were divided into four groups. Rats except for the normal group were received TAA (200 mg/kg of body weight, I.P) were divided into three groups (n=9/group) : Group 1 (TAA only), Group 2 (TAA + 200 mg/kg YGS) and Group 3 (TAA + 200 mg/kg N-YGS). Acute liver damage confirmed using histological examination, The factors associated with oxidative stress and liver function activity measured in serum. Also, expressions of inflammation related proteins were investigated by western blot analysis. Results : Oxidative stress factors such as ROS and $ONOO^-$ in the Group 2 was manifested by a significant rise compared with Group 1. YGS markedly decreased the elevated ROS and $ONOO^-$. Furthermore, YGS significantly reduced the levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) The nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation induced by TAA led to increase both inflammatory mediators and cytokines. While YGS administration remarkably suppressed such the overexpression. In addition, the histopathological analysis showed that the liver tissue lesions were improved obviously in YGS treatment. Conclusion : YGS provided a hepatoprotective effect on acute liver damage through the suppression of oxidative stress. Especially, this effect enhanced markedly when Saigae Tataricae Cornu is included.

Effect of the Toluene Administration on the Liver Damage in Rats Fed Low or Standard Protein Diet (저 및 표준단백식이로 성장시킨 흰쥐에 Toluene 투여가 간 손상에 미치는 영향)

  • 윤종국;김경순;임영숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.25 no.6
    • /
    • pp.981-985
    • /
    • 1996
  • To study the effect of toluene administration on the liver damage, rats were previously fed a low (casein 7%, LP) or standard(casein 20%, SP) protein diet and for four days toluene(50% in olive oil) was given at 0.2ml/100g body weight/day to the male rats, and then the degree of liver damage in toluenetreated animals fed LP were compared with those fed SP. The increasing rate of liver weight/body weight and the serum levels of xanthine oxidase to the control group were higher in rats fed SP than those fed LP. The decreasing rate of protein contents in cytosol, mitochondria and glycogen, glutathione contents of liver to the control group were higher in rats fed SP than those fed LP. In histopathological findings, the swelling of hepatic cell around the central vein was demonstrated in all the two groups toluene-treated rats. But the degree of swelling severity in hepatocytes was somewhat higher in rats fed SP than those fed LP. Therefore it is assumed that the degree of liver damage severity in toluenetreated animals was higher in rats fed SP than those fed LP.

  • PDF

The Effects of Injinchunggan-tang (Yinchenchinggan-tang) on DMN Liver Damage from Applying Proteomics (인진청간탕(茵蔯淸肝湯)이 DMN에 의한 간손상 proteome에 미치는 영향)

  • Kim, Hyo-Jin;Kim, Young-Chul;Lee, Jang-Hoon;Woo, Hong-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.133-148
    • /
    • 2007
  • Objectives : The purpose of our study was to investigate the effects of Injinchunggan-tang (Yinchenchinggan-tang) on DMN liver damage caused by applying proteomics. Materials and Methods: Sprague-Dawley rats were used in this experiment; the rats were divided into the normal group (normal saline), the control group (DMN) and the samplegroup (DMN+IJCGT). The DMN was induced 3 days a week for 3 weeks in the control group. The normal saline without DMN was induced by the same method in the normal group. Injinchunggan-tang extract was orally administered twice a day for 3 weeks after DMN was induced in the sample group. The livers of each group were processed and we investigated histology, OxyBlot, 2-dimensional electrophoresis, and western blot of liver of each group. Results : In the histological findings of the liver, the control group showed portal fibrosis with a few septa or without septa. The sample group showed no fibrosis or portal fibrosis without septa. In the OxyBlot finding, Injinchunggan-tang prevented liver damage by oxidation. In the 2-dimensional electrophoresis finding, formiminotransferase cyclodeaminase (FTCD), FYVE-finger containing protein, aldehyde dehydrogenase (ALDH), and ratio of predicted : hypothetical protein LOC68668 isoform 1 were changed. Conclusions : Injinchunggan-tang exerts an inhibitory effect against the fibrosis and oxidation induced by the DMN in the rat liver cell, and some proteins induced by the DMN were changed by Injinchunggan-tang.

  • PDF

Protective effect of Citri Unshius Pericarpium against cadmium-induced liver damage in mice (카드뮴으로 인한 마우스 간 손상에 대한 진피의 보호효과)

  • Noh, Gyu Pyo;Lee, Jong Rok;Kim, Jae Kwang;Park, Sang Mi;Park, Sook Jahr;Kim, Sang Chan
    • The Korea Journal of Herbology
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • Objective : Citri Unshius Pericarpium (Citrus unshiu peel) has been used in Korean medicine to treat indigestion, vomiting, coughing and phlegm. This study investigated the hepatoprotective effect of ethanol extract of Citrus unshiu peel (CEE) in cadmium (CdCl2)-treated mouse model. Methods : CEE was dissolved in water and administered orally to mice once a day for 7 consecutive days. The mice were then exposed to a single intraperitoneal (i.p.) injection of cadmium (4 mg/kg body weight) to induce acute hepatotoxicity. At the end of the experiment, blood and liver tissue samples were collected, analyzed for alanine aminotransferase (ALT), aspartate aminotransferase (AST), and histopathological evaluation. Liver damage was assessed as the percentage of degenerative areas of the hepatic parenchyma, the number of degenerative hepatocytes, and the number of infiltrated inflammatory cells. Results : In cadmium-treated rats, pretreatment with CEE significantly reduced the serum ALT and AST levels associated with liver damage. Histopathologically, CEE prevented degenerative changes on the hepatic tissues including confluent necrosis, congestions and infiltration of inflammatory cells. CEE also reduced the elevation of oxidative stress markers (nitrotyrosine and 4-hydroxynonenal) and apoptosis markers (cleaved caspase-3 and cleaved PARP) positive cells. PARP protein expression in liver tissue was also restored by CEE. Conclusion : This study showed that CEE exerted antioxidant and anti-apoptotic effects against cadmium-induced liver injury. Thus, it can be concluded that CEE can be used to prevent liver damage caused by cadmium.

Effect of Dietary Monascus Pigment on the Liver Damage Induced with $CCl_4$in Rats

  • Park, Young-Ja;Park, Hyeoun-Yeoun;Kim, Young-Ran;Oh, Jeong-Dae;Yoon, Chong-Guk
    • Biomedical Science Letters
    • /
    • v.9 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • In the biological world, there are a number of ecological fights for survival between each organism such as plants, animals and microorganism In such events, an organism can use its natural bioactive products as defence agent against other organisms. Furthermore, natural bioactive products can be utilized for medicine or functional food. Recently, we investigate the effect of Monascus pigment extracted from a fungus, Monascus anke, on the alcohol metabolism and blood lipid profile. In the present study, it is observed that Monascus pigment supplemented dietary may have a hepatoprotective effect on rat's liver damage induced with $CCl_4$ . By treatment with $CCl_4$(3 times, I.P), liver damage was reduced more in the rats fed 2% Monascus pigment extract supplemented diet than those fed standard diet, based on the serum levels of alanine aminotransferase, microsomal glucose-6-phosphatse activity and hepaic malondialdehyde content. On the other hand, oxygen free radical generating enzymes, hepatic P-450 dependent aniline hydroxylase, xanthine oxidase, and oxygen free radical scavenging enzymes, hepatic glutathione S-transferase, catalase, superoxide dismutase activities were generally higher both in $CCl_4$ treated group and control fed 2% Monascus pigment extract supplemented diet than those fed standard diet. In conclusion, the rats fed 2% Monascus pigment extract supplemented diet showed more reduced liver damage than those fed standard diet, which may be due to the acceleration of oxygen free radical metabolism.

  • PDF

Protective Effect of Joo-Juk on Acetaminophen-induced Liver Damage in Mouse Model (Acetaminophen 유도 간 손상에 대한 주적(酒敵)의 보호 효과)

  • Kim, Sung-Zoo;Kang, Hyung-Sub;Shin, Jae-Suk;Xie, Guang-Hua;Huh, Jin;Jang, Seon-Il
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.123-132
    • /
    • 2009
  • Acetaminophen (AP) is widely used as an over-the-counter analgesic and antipyretic drug. AP-induced hepatotoxicity is a common consequence of AP overdose and may lead to acute liver failure. In this study, we investigated the liver damage in mice using single dose (300 mg/kg) of AP and the possible protective effects of administration (50-200 mg/kg body weight) of Joo-Juk on acetaminophen-induced liver damage in mice. The alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were determined in the plasma of mice. The effect of Joo-Juk on lipid peroxidation product thiobarbituric reacting substances (TBARS) and some antioxidant enzymes superoxide dismutase (SOD), catalase, d-aminolevulinate dehydratase ($\sigma$-ALA-D) activities, and gluthathione peroxidase (GPx), were also evaluated in the mouse liver homogenate. AP caused liver damage as evident by statistically significant increased in plasma activities of AST and ALT. There were statistically significant losses in the activities of SOD, catalase, $\sigma$-ALA-D, and GPx and an increase in TBARS in the liver of AP-treated group compared with the control group. However, Joo-Juk was able to counteract these effects. These results suggest that Joo-juk can act as hepato-protectant against AP toxicity and is a good candidate for further evaluation as an effective chemotherapeutic agent.

  • PDF

Protective Effects of Sasa borealis Bamboo Browse Extract on Acetaminophen-induced Liver Damage in Mouse Model (Acetaminophen 유도 간 손상에 대한 조릿대 애엽 추출물의 보호 효과)

  • Jang, Seon-Il;Yun, Young-Gab;Park, Kwang-Hyun;Xie, Guanghua;Kwon, Tae-Oh
    • Herbal Formula Science
    • /
    • v.16 no.2
    • /
    • pp.183-191
    • /
    • 2008
  • Acetaminophen (N-acety1-p-aminophenol, paracetamol) is widely used as an over-the-counter analgesic and antipyretic drug. Intake of a over dose of acetaminophen may result in severe hepatic necrosis. In this study, we investigated the liver damage in mice using single dose (300 mg/kg) of acetaminophen and the possible protective effects of administration (50-200 mg/kg body weight) of SB-Ex on acetaminophen-induced liver damage in mice. The alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were determined in the plasma of mice. The effect of SB-Ex on lipid peroxidation product thiobarbituric reacting substances (TBARS) and some antioxidant enzymes superoxide dismutase (SOD), catalase, d-aminolevulinate dehydratase (${\sigma}$-ALA-D) activities, and gluthathione peroxidase (GPx), were also evaluated in the mouse liver homogenate. Acetaminophen caused liver damage as evident by statistically significant increased in plasma activities of AST and ALT. There were general statistically significant losses in the activities of SOD, catalase, ${\sigma}$-ALA-D, and GPx and an increase in TBARS in the liver of acetaminophen-treated group compared with the control group. However, SB-Ex was able to counteract these effects. These results suggest that SB-Ex can act as hepatoprotectives against acetaminophen toxicity and is a good candidate for further evaluation as an effective chemotherapeutic agent.

  • PDF

Protective Effect of Pterocarpus santalinus on Galactosamine Induced Liver Damage

  • Dhanabal, S.P.;Syamala, G.;Elango, K.;Suresh, B.
    • Natural Product Sciences
    • /
    • v.12 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • The present study was carried out to investigate the hepatoprotective effect of the extract of Pterocarpus santalinus Linn on acute hepatotoxicity induced in Wistar albino rats by a single dose of Galactosamine (400 mg/kg). Suspensions of methanolic extract of heartwood of P. santalinus (200 and 400 mg/kg) in 0.3% Carboxy Methyl Cellulose (CMC) were administered p.o. to experimental animals and hepatoprotective activity was monitored by estimating aspartate amino transferase (ASAT, GOT), alanine amino transferase (ALAT, GPT), alkaline phosphatase (ALP), total bilirubin (TB), lactate dehydrogenase (LDH), total cholesterol (TC), triglycerides (TGL), albumin, total protein (TP) levels. The methanolic extract significantly reduced the elevation of serum transaminases and alterations of biochemical parameters induced by hepatotoxin, and alleviated the degree of liver damage. The results were supported by histopathological studies of liver samples showing regeneration of hepatocytes in treated animals. Silymarin (25 mg/kg), a known hepatoprotective drug was used for comparison. Based on the results obtained, it can be concluded that P. santalinus exerts hepatoprotective activity and may serve as a useful adjuvant in several clinical conditions associated with liver damage.